rimorphin has been researched along with norbinaltorphimine* in 6 studies
6 other study(ies) available for rimorphin and norbinaltorphimine
Article | Year |
---|---|
Possible involvement of dynorphin A release via mu1-opioid receptor on supraspinal antinociception of endomorphin-2.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu1-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against micro-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of micro1-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of micro1-opioid receptor. Topics: Analgesics; Animals; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Immune Sera; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2008 |
Relative contribution of endogenous opioids to myocardial ischemic tolerance.
Opioid preconditioning by exogenous opioids experimentally protects the myocardium against ischemia/reflow injury. Additionally, endogenous opioid peptides released during ischemia also enhance ischemic tolerance. Promiscuous opioid receptor agonists conceal the differential contribution of the mu, delta, and kappa opioid subtypes. This study compared the impact of selective delta and kappa opioid receptor antagonists on postischemic functional and metabolic recovery. Also measured were changing levels of peptides dynorphin B and met-enkephalin during ischemia/reflow injury.. Using the rabbit Langendorff model, the functional recovery of control hearts (following 2 h of global ischemia) was compared to hearts pretreated with delta antagonist NTB (1 microM) or kappa antagonist, nor-BNI (1 microM). Measures included percentage of return of isovolumetric developed pressure (LVDP), myocardial oxygen consumption (MVO(2)) and coronary flow (CF). In additional studies, untreated hearts were harvested at baseline, following ischemia, or following 5 or 45 min of reflow. Tissue concentrations of met-enkephalin and dynorphin B were measured by RIA.. After 45 min of reflow, hearts pretreated with either NTB or nor-BNI showed impaired functional recovery by a decrease in LVDP (P < 0.05); however, MVO(2) or CF were unaffected. RIA data shows that baseline levels of both peptides are similar and increase significantly during ischemia, but reflow dynorphin levels drop far below baseline, while met-enkephalin returns to baseline.. Antagonism of both delta and kappa opioid receptor subtypes equally contributes to impaired left ventricular function, independent of altered perfusion or metabolic rate. Endogenous kappa-receptor agonists may contribute primarily during ischemia or early reflow, since low late reflow dynorphin content did not correlate with altered functional recovery. Topics: Animals; Dynorphins; Endorphins; Enkephalin, Methionine; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Naltrexone; Narcotic Antagonists; Rabbits; Receptors, Opioid, delta; Receptors, Opioid, kappa; Recovery of Function; Ventricular Function, Left | 2004 |
Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects.
Rats exposed to learned helplessness (LH), an animal model of depression, showed a recovery following an intracerebroventricular injection of nor-binaltorphimine dihydrochloride (norBNI; a kappa-opioid antagonist). To investigate the potential role of dynorphin A and dynorphin B, we examined the effects of different stress/depression models on dynorphin A and dynorphin B immunoreactivity in hippocampus and nucleus accumbens (NAc). Immobilization stress (3 h) caused an increase in levels of dynorphin A and dynorphin B immunoreactivity in the hippocampus and the NAc. Forced swim stress also temporally increased dynorphin A levels in the hippocampus. Furthermore, exposure to LH produced a similar increase in dynorphin A and dynorphin B in the hippocampus and NAc. Infusions of norBNI into the dentate gyrus or CA3 regions of hippocampus and into the shell or core regions of NAc produced antidepressant-like effects in the LH paradigm. The degrees of norBNI's effects were stronger in the CA3 region and NAc shell and less effective in the dentate gyrus of hippocampus and NAc core. These results indicate that both dynorphin A and dynorphin B contribute to the effects of stress, and suggest that blockade of kappa-opioid receptors may have therapeutic potential for the treatment of depression. Topics: Animals; Behavior, Animal; Cell Count; Disease Models, Animal; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Escape Reaction; Helplessness, Learned; Immobilization; Immunohistochemistry; Limbic System; Male; Naltrexone; Rats; Rats, Sprague-Dawley; Stress, Physiological | 2004 |
Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
Two highly selective mu-opioid receptor agonists, endomorphin-1 and endomorphin-2, have been identified and postulated to be endogenous ligands for mu-opioid receptors. Intrathecal (i.t.) administration of endomorphin-1 and endomorphin-2 at doses from 0.039 to 5 nmol dose-dependently produced antinociception with the paw-withdrawal test. The paw-withdrawal inhibition rapidly reached its peak at 1 min, rapidly declined and returned to the pre-injection levels in 20 min. The inhibition of the paw-withdrawal responses to endomorphin-1 and endomorphin-2 at a dose of 5 nmol observed at 1 and 5 min after injection was blocked by pretreatment with a non-selective opioid receptor antagonist naloxone (1 mg/kg, s.c.). The antinociceptive effect of endomorphin-2 was more sensitive to the mu (1)-opioid receptor antagonist, naloxonazine than that of endomorphin-1. The endomorphin-2-induced paw-withdrawal inhibition at both 1 and 5 min after injection was blocked by pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine (10 mg/kg, s.c.) or the delta(2)-opioid receptor antagonist naltriben (0.6 mg/kg, s.c.) but not the delta(1)-opioid receptor antagonist 7-benzylidine naltrexone (BNTX) (0.6 mg/kg s.c.). In contrast, the paw-withdrawal inhibition induced by endomorphin-1 observed at both 1 and 5 min after injection was not blocked by naloxonazine (35 mg/kg, s.c.), nor-binaltorphimine (10 mg/kg, s.c.), naltriben (0.6 mg/kg, s.c.) or BNTX (0.6 mg/kg s.c.). The endomorphin-2-induced paw-withdrawal inhibition was blocked by the pretreatment with an antiserum against dynorphin A-(1-17) or [Met(5)]enkephalin, but not by antiserum against dynorphin B-(1-13). Pretreatment with these antisera did not affect the endomorphin-1-induced paw-withdrawal inhibition. Our results indicate that endomorphin-2 given i.t. produces its antinociceptive effects via the stimulation of mu (1)-opioid receptors (naloxonazine-sensitive site) in the spinal cord. The antinociception induced by endomophin-2 contains additional components, which are mediated by the release of dynorphin A-(1-17) and [Met(5)]enkephalin which subsequently act on kappa-opioid receptors and delta(2)-opioid receptors to produce antinociception. Topics: Analgesics; Animals; Benzylidene Compounds; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Methionine; Immune Sera; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Time Factors | 2001 |
Hippocampal dynorphin B injections impair spatial learning in rats: a kappa-opioid receptor-mediated effect.
The hippocampus plays a central role in the acquisition and storage of information. Long-term potentiation in the mossy fibre pathway to the CA3 region in the hippocampus, an animal model of memory acquisition, is modulated by dynorphin peptides. This study investigated the possible role of hippocampal dynorphin in spatial learning. Male rats were trained in the Morris Water Task after microinjection with different doses of dynorphin B (1, 3.3 or 10 nmol/rat) or artificial cerebrospinal fluid (as control) into the CA3 region of the dorsal hippocampus. Dynorphin B was found to impair spatial learning at all tested doses. The synthetic kappa1-selective opiate receptor antagonist nor-binaltorphimine (2 nmol) also given into the hippocampus fully blocked the acquisition impairment caused by dynorphin B (10 nmol), while nor-binaltorphimine alone did not affect learning performance. These findings suggest that dynorphin peptides could play a modulatory role in hippocampal plasticity by acting on hippocampal kappa-receptors and thereby impair spatial learning. Topics: Animals; Behavior, Animal; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Hippocampus; Male; Maze Learning; Microinjections; Naltrexone; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Spatial Behavior | 1998 |
Kappa-opioids decrease excitatory transmission in the dentate gyrus of the guinea pig hippocampus.
In the guinea pig hippocampus, kappa 1-opioid binding sites were primarily localized in the molecular layer of the dentate gyrus as shown by autoradiography using either the kappa 1-selective radioligand 3H-U69,593 or the nonselective radioligand 3H-diprenorphine in the presence of unlabeled mu- and delta-blocking ligands. In this region, the electrophysiological effects of kappa 1-receptor activation were identified using extracellular and intracellular recordings of dentate granule cell responses. The amplitude of the extracellularly recorded population spike was reduced by U69,593 with an EC50 of 26 nM; this effect was reversible and blocked by the opioid antagonist naloxone. The kappa 1-selective antagonist norbinaltorphimine also blocked the effect of U69,593 with an apparent equilibrium dissociation constant (Ki) of 0.26 nM determined by Schild analysis in the physiologic assay. This value agreed well with the Ki for norbinaltorphimine at kappa 1-binding sites measured by radioligand binding displacement (0.24 nM). These results indicate that the electrophysiologic response observed was likely mediated by kappa 1-receptors. As seen with U69,593, dynorphin B, an endogenous opioid peptide that is present in the dentate gyrus, also inhibited the population spike response. mu- and delta-selective opioid agonists had no effect on the amplitude of the maximally evoked response. Intracellular recordings of dentate granule cells showed no direct effects of U69,593 on the granule cells themselves. However, analysis of synaptic potentials revealed that U69,593 significantly reduced the amplitude of glutaminergic EPSPs evoked by afferent stimulation without affecting IPSP amplitudes. The specific effect of U69,593 application on granule cell EPSPs indicates that presynaptic kappa 1-receptor activation inhibits glutamate release from perforant path terminals in the molecular layer of the dentate gyrus. These results suggest that endogenous dynorphins present in the granule cells may act as feedback inhibitors of the major excitatory input to the dentate gyrus. Topics: Action Potentials; Animals; Benzeneacetamides; Diprenorphine; Dynorphins; Electrophysiology; Endorphins; Guinea Pigs; Hippocampus; Male; Naloxone; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Synapses | 1992 |