rimorphin has been researched along with Substance-Withdrawal-Syndrome* in 2 studies
2 other study(ies) available for rimorphin and Substance-Withdrawal-Syndrome
Article | Year |
---|---|
A comparison between microwave irradiation and decapitation: basal levels of dynorphin and enkephalin and the effect of chronic morphine treatment on dynorphin peptides.
Opioid peptides were analysed in tissue extracts of various brain structures and the pituitary gland from rats sacrificed by microwave irradiation, and compared with peptide levels in tissue extracts from decapitated rats. Dynorphin A, dynorphin B and Leu-enkephalinArg6, derived from prodynorphin, and Met-enkephalinArg6Phe7 from proenkephalin, were measured. Basal immunoreactive levels of dynorphin A and B were consistently higher in extracts from microwave-irradiated rats, whereas in these extracts immunoreactive levels of Leu-enkephalinArg6, an endogenous metabolite of dynorphin peptides, were either lower than, the same as or higher than in decapitated rats. Immunoreactive levels of Met-enkephalinArg6Phe7 were higher in microwave-irradiated rats. Effects of morphine treatment on prodynorphin peptide levels were evaluated and compared with previous findings in decapitated rats. Dynorphin immunoreactive levels were higher in the nucleus accumbens and striatum of morphine-tolerant rats than in corresponding areas in saline-treated rats. These results indicate tissue-specific metabolism of prodynorphin peptides and show that metabolism of opioid peptides occurs during the dissection procedure after decapitation of the rat even though precautions are taken to minimize degradation. Topics: Animals; Brain Chemistry; Decerebrate State; Dynorphins; Endorphins; Enkephalins; Injections, Subcutaneous; Male; Microwaves; Morphine; Opioid Peptides; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome | 1997 |
The effects of morphine treatment and morphine withdrawal on the dynorphin and enkephalin systems in Sprague-Dawley rats.
The effect of morphine tolerance and withdrawal on prodynorphin peptides was studied in relevant brain areas and in the pituitary gland of male Sprague-Dawley rats, and compared with effects on the proenkephalin-derived peptide Met-enkephalin. After 8 days of morphine injections (twice daily), dynorphin A and B levels increased in the nucleus accumbens and dynorphin A levels increased also in the striatum. Morphine treatment increased striatal Met-enkephalin. Leu-enkephalinArg6 levels were reduced in the ventral tegmental area (VTA). Morphine-treated rats had very low Leu-enkephalinArg6 levels in the hippocampus as compared to saline control rats. Comparison of the relative amounts of dynorphin peptides and the shorter prodynorphin-derived peptides, Leu-enkephalinArg6 and Leu-enkephalin, revealed a relative increase in dynorphin peptides versus shorter fragments in the nucleus accumbens, VTA and hippocampus. Morphine-tolerant rats had lower levels of dynorphin A in both lobes of the pituitary gland, whereas hypothalamic dynorphin levels were unaffected by morphine. Leu-enkephalinArg6 levels were reduced in the hypothalamus, but not changed in the pituitary gland. Naloxone-precipitated withdrawal accentuated the increase in dynorphin A and B levels in the accumbens and dynorphin A levels in the striatum, while inducing an increase in enkephalin levels in the accumbens and Met-enkephalin in the VTA. In the hippocampus, Leu-enkephalinArg6 levels remained low in the withdrawal state. The low dynorphin levels in the anterior part of the pituitary gland were reversed by naloxone, whereas the low dynorphin A levels in the neurointermediate lobe were 0ven lower in the withdrawal state.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Analysis of Variance; Animals; Drug Tolerance; Dynorphins; Endorphins; Enkephalin, Leucine; Male; Morphine; Naloxone; Peptides; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome | 1995 |