Page last updated: 2024-11-06

acefylline

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

acefylline: RN given refers to parent cpd [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID69550
CHEMBL ID70246
CHEBI ID94615
SCHEMBL ID308514
MeSH IDM0071346

Synonyms (94)

Synonym
2-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1h-purin-7-yl)acetic acid
nsc52996
nsc-52996
theophylline-acetic acid
7-(carboxymethyl)theophylline
7-theophyllineacetic acid
652-37-9
7h-purine-7-acetic acid,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
purine-7-acetic acid,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
7h-purine-7-acetic acid, 1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
7-theophyllinylacetic acid
7-theophyllinylessigsaeure
7-theophyllinessigsaeure
acephylline
theophyllin-7-ylacetic acid
acefylline
2-(p-chlorphenoxy)-2-methylpropyl 1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxopurine-7-acetate
brn 0279221
nsc 52996
theophylline-7-acetic acid
purine-7-acetic acid, 1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxopurine-7-acetic acid
acide theophylline-ethanoique-7 [french]
einecs 211-490-2
theophyllineacetic acid
OPREA1_398884
theophylline-7-acetic acid, >=99.0% (t)
CHEMBL70246 ,
doxophylline metabolite m2
caffeine carboxylic acid
2-(1,3-dimethyl-2,6-dioxopurin-7-yl)acetic acid
MLS001032052
smr000718632
bdbm50113248
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-purin-7-yl)-acetic acid
carboxymethyltheophylline
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7h-purin-7-yl)acetic acid
STK801809
AKOS000120359
A835035
T2941
1,3-dimethylxanthine-7-acetic acid
CCG-106578
unii-m494ue2yep
5-26-14-00088 (beilstein handbook reference)
m494ue2yep ,
ec 211-490-2
acide theophylline-ethanoique-7
2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1h-purin-7(6h)-yl)acetic acid
FT-0632754
acefylline [who-dd]
caffeine carboxylic acid [inci]
acefylline [mi]
1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxopurine-7-acetic a
SCHEMBL308514
theophylline 7-acetic acid
BBL027883
NCGC00253638-01
cas-652-37-9
dtxcid7031585
tox21_113765
dtxsid6057796 ,
TS-00694
AF-684/00246037
Q-201818
acepifylline (salt/mix)
aminodal (salt/mix)
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7h-purin-7-yl)acetic acid #
acefylline sodium salt (salt/mix)
CS-7963
HY-B1505
mfcd00022832
theophilline-7-acetic acid (1,3-dimethylxantine-7-acetic acid)
F0849-4607
acetyloxytheophylline
SR-01000898401-2
sr-01000898401
CHEBI:94615
2-(1,3-dimethyl-2,6-dioxo-7-purinyl)acetic acid
HMS3714E15
Q4673059
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7h-purin-7-yl)acetic acid
EN300-20362
DB13573
A16822
HMS3885C16
acefylline;theophyllineacetic acid; theophylline-7-acetic acid
D82360
S3988
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7h-purin-7-yl)aceticacid
LCZC2430
SY048346
2-[1,3-dimethyl-2,6-dioxo-2,3-dihydro-1h-purin-7(6h)-yl]acetic acid
Z104477882

Research Excerpts

Dosage Studied

ExcerptRelevanceReference
" The drug was given orally in a dosage of 100 mg BID for ten days."( Therapeutic activity of ambroxol theophyllinacetate in chronic obstructive pulmonary diseases.
Primbs, K, 1985
)
0.27
"Two chromatographic methods have been proposed for the simultaneous determination of acefylline piperazine (ACEF) and phenobarbital (PHENO) in presence of methylparaben as additive in pharmaceutical dosage form."( Validated Smart Different Chromatographic Methods for Selective Quantification of Acefylline Piperazine, Phenobarbital Sodium and Methylparaben Additive in Bulk and Pharmaceutical Dosage Form.
Algmaal, SE; Boltia, SA; El Saharty, YS; Mostafa, NM, 2022
)
1.17
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
oxopurine
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (2)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
RAR-related orphan receptor gammaMus musculus (house mouse)Potency0.29850.006038.004119,952.5996AID1159521
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Adenosine receptor A2bHomo sapiens (human)Ki27.60000.00021.635210.0000AID33176
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (15)

Processvia Protein(s)Taxonomy
G protein-coupled adenosine receptor signaling pathwayAdenosine receptor A2bHomo sapiens (human)
positive regulation of chronic inflammatory response to non-antigenic stimulusAdenosine receptor A2bHomo sapiens (human)
G protein-coupled receptor signaling pathwayAdenosine receptor A2bHomo sapiens (human)
activation of adenylate cyclase activityAdenosine receptor A2bHomo sapiens (human)
positive regulation of vascular endothelial growth factor productionAdenosine receptor A2bHomo sapiens (human)
positive regulation of cGMP-mediated signalingAdenosine receptor A2bHomo sapiens (human)
cGMP-mediated signalingAdenosine receptor A2bHomo sapiens (human)
positive regulation of chemokine productionAdenosine receptor A2bHomo sapiens (human)
positive regulation of interleukin-6 productionAdenosine receptor A2bHomo sapiens (human)
mast cell degranulationAdenosine receptor A2bHomo sapiens (human)
positive regulation of mast cell degranulationAdenosine receptor A2bHomo sapiens (human)
relaxation of vascular associated smooth muscleAdenosine receptor A2bHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionAdenosine receptor A2bHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayAdenosine receptor A2bHomo sapiens (human)
vasodilationAdenosine receptor A2bHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (3)

Processvia Protein(s)Taxonomy
G protein-coupled adenosine receptor activityAdenosine receptor A2bHomo sapiens (human)
protein bindingAdenosine receptor A2bHomo sapiens (human)
G protein-coupled receptor activityAdenosine receptor A2bHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (4)

Processvia Protein(s)Taxonomy
plasma membraneAdenosine receptor A2bHomo sapiens (human)
Schaffer collateral - CA1 synapseAdenosine receptor A2bHomo sapiens (human)
presynapseAdenosine receptor A2bHomo sapiens (human)
glutamatergic synapseAdenosine receptor A2bHomo sapiens (human)
plasma membraneAdenosine receptor A2bHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (43)

Assay IDTitleYearJournalArticle
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID227700Anticonvulsant activity2003Bioorganic & medicinal chemistry letters, Aug-18, Volume: 13, Issue:16
Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity.
AID33176Binding affinity at human Adenosine A2B receptor expressed in HEK293 cells, using [125I]ABOPX as radioligand2002Journal of medicinal chemistry, May-23, Volume: 45, Issue:11
Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions.
AID156498Percent of 1 mM Caffeine effect to release [Ca2+] at 1 mM in PC12 cells1999Journal of medicinal chemistry, Jul-15, Volume: 42, Issue:14
Potentiation of cADPR-induced Ca(2+)-release by methylxanthine analogues.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (34)

TimeframeStudies, This Drug (%)All Drugs %
pre-19909 (26.47)18.7374
1990's3 (8.82)18.2507
2000's5 (14.71)29.6817
2010's7 (20.59)24.3611
2020's10 (29.41)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 49.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index49.35 (24.57)
Research Supply Index3.64 (2.92)
Research Growth Index4.83 (4.65)
Search Engine Demand Index74.06 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (49.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other37 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]