Page last updated: 2024-11-06

1-phenylimidazole

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

1-Phenylimidazole is a heterocyclic compound with a broad range of applications. It is often used as a building block in the synthesis of pharmaceuticals, agrochemicals, and other fine chemicals. Its synthesis involves a condensation reaction between benzaldehyde and formamide. 1-Phenylimidazole has been shown to possess various pharmacological activities, including anti-inflammatory, antioxidant, and anticancer properties. Its potential therapeutic applications have led to extensive research on its effects and mechanisms of action. Additionally, it is studied for its ability to act as a ligand for various receptors and enzymes, which could have implications in developing new drugs and therapies. The versatility of 1-phenylimidazole as a synthetic intermediate and its potential biological activities make it a significant compound in various fields.'

1-phenylimidazole: ligand for cytochrome P-450 & inhibitor of microsomal oxidation [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID81595
CHEMBL ID275066
SCHEMBL ID451
MeSH IDM0113971

Synonyms (33)

Synonym
n-phenylimidazole
1-phenylimidazole
bdbm7886
chembl275066 ,
1h-imidazole, 1-phenyl-
1-phenyl-1h-imidazole
inchi=1/c9h8n2/c1-2-4-9(5-3-1)11-7-6-10-8-11/h1-8
1-phenylimidazole, 97%
smr000568399
MLS001074869
7164-98-9
phenylimidazole
A837273
n-phenylimidazole;1-phenyl-1h-imidazole
NCGC00247005-01
AKOS006223210
P2030
1h-imidazole, phenyl-
HMS2231B15
FT-0608260
SCHEMBL451
12N-710
DTXSID10221885
n-(phenyl)imidazole
1-phenyl-1h-imidazole #
mfcd00041204
CS-W004969
Z440825046
J-505057
Q27464441
SY041937
AMY11870
EN300-67324
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (6)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency5.01190.044717.8581100.0000AID485294
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Nitric oxide synthase, brainHomo sapiens (human)Ki430.00000.01501.18117.3000AID404423
Glutaminyl-peptide cyclotransferaseHomo sapiens (human)Ki4,600.00000.26202.93587.0000AID1796106
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Serine/threonine-protein kinase mTORHomo sapiens (human)Kd10,000.00000.00010.59939.2000AID69097
Cytochrome P450 144Mycobacterium tuberculosis CDC1551Kd290.00000.36002.59905.3000AID1802600
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Epoxide hydrolase 1Rattus norvegicus (Norway rat)E100330.00006.20006.20006.2000AID208343
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (123)

Processvia Protein(s)Taxonomy
response to hypoxiaNitric oxide synthase, brainHomo sapiens (human)
regulation of sodium ion transportNitric oxide synthase, brainHomo sapiens (human)
arginine catabolic processNitric oxide synthase, brainHomo sapiens (human)
nitric oxide biosynthetic processNitric oxide synthase, brainHomo sapiens (human)
striated muscle contractionNitric oxide synthase, brainHomo sapiens (human)
myoblast fusionNitric oxide synthase, brainHomo sapiens (human)
response to heatNitric oxide synthase, brainHomo sapiens (human)
negative regulation of calcium ion transport into cytosolNitric oxide synthase, brainHomo sapiens (human)
regulation of cardiac muscle contraction by calcium ion signalingNitric oxide synthase, brainHomo sapiens (human)
peptidyl-cysteine S-nitrosylationNitric oxide synthase, brainHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationNitric oxide synthase, brainHomo sapiens (human)
multicellular organismal response to stressNitric oxide synthase, brainHomo sapiens (human)
xenobiotic catabolic processNitric oxide synthase, brainHomo sapiens (human)
vasodilationNitric oxide synthase, brainHomo sapiens (human)
negative regulation of potassium ion transportNitric oxide synthase, brainHomo sapiens (human)
cell redox homeostasisNitric oxide synthase, brainHomo sapiens (human)
positive regulation of DNA-templated transcriptionNitric oxide synthase, brainHomo sapiens (human)
positive regulation of transcription by RNA polymerase IINitric oxide synthase, brainHomo sapiens (human)
negative regulation of hydrolase activityNitric oxide synthase, brainHomo sapiens (human)
negative regulation of serotonin uptakeNitric oxide synthase, brainHomo sapiens (human)
negative regulation of calcium ion transportNitric oxide synthase, brainHomo sapiens (human)
regulation of cardiac muscle contractionNitric oxide synthase, brainHomo sapiens (human)
regulation of ryanodine-sensitive calcium-release channel activityNitric oxide synthase, brainHomo sapiens (human)
cellular response to growth factor stimulusNitric oxide synthase, brainHomo sapiens (human)
positive regulation of the force of heart contractionNitric oxide synthase, brainHomo sapiens (human)
positive regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathwayNitric oxide synthase, brainHomo sapiens (human)
positive regulation of sodium ion transmembrane transportNitric oxide synthase, brainHomo sapiens (human)
regulation of calcium ion transmembrane transport via high voltage-gated calcium channelNitric oxide synthase, brainHomo sapiens (human)
positive regulation of membrane repolarization during ventricular cardiac muscle cell action potentialNitric oxide synthase, brainHomo sapiens (human)
positive regulation of guanylate cyclase activityNitric oxide synthase, brainHomo sapiens (human)
nitric oxide mediated signal transductionNitric oxide synthase, brainHomo sapiens (human)
response to hormoneNitric oxide synthase, brainHomo sapiens (human)
negative regulation of blood pressureNitric oxide synthase, brainHomo sapiens (human)
response to lipopolysaccharideNitric oxide synthase, brainHomo sapiens (human)
protein destabilizationSerine/threonine-protein kinase mTORHomo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
protein autophosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cell growthSerine/threonine-protein kinase mTORHomo sapiens (human)
T-helper 1 cell lineage commitmentSerine/threonine-protein kinase mTORHomo sapiens (human)
heart morphogenesisSerine/threonine-protein kinase mTORHomo sapiens (human)
heart valve morphogenesisSerine/threonine-protein kinase mTORHomo sapiens (human)
energy reserve metabolic processSerine/threonine-protein kinase mTORHomo sapiens (human)
'de novo' pyrimidine nucleobase biosynthetic processSerine/threonine-protein kinase mTORHomo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
inflammatory responseSerine/threonine-protein kinase mTORHomo sapiens (human)
DNA damage responseSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoskeleton organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosome organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
germ cell developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
response to nutrientSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cell sizeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
response to heatSerine/threonine-protein kinase mTORHomo sapiens (human)
post-embryonic developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of autophagySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of lamellipodium assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of gene expressionSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of epithelial to mesenchymal transitionSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of myotube differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
peptidyl-serine phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
neuronal action potentialSerine/threonine-protein kinase mTORHomo sapiens (human)
protein catabolic processSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of cell growthSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of actin filament polymerizationSerine/threonine-protein kinase mTORHomo sapiens (human)
T cell costimulationSerine/threonine-protein kinase mTORHomo sapiens (human)
ruffle organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of myelinationSerine/threonine-protein kinase mTORHomo sapiens (human)
response to nutrient levelsSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to nutrient levelsSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to nutrientSerine/threonine-protein kinase mTORHomo sapiens (human)
TOR signalingSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of phosphoprotein phosphatase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to insulin stimulusSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of actin cytoskeleton organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
calcineurin-NFAT signaling cascadeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to amino acid starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
multicellular organism growthSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC1 signalingSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of circadian rhythmSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of apoptotic processSerine/threonine-protein kinase mTORHomo sapiens (human)
response to amino acidSerine/threonine-protein kinase mTORHomo sapiens (human)
anoikisSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of osteoclast differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of translationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of cell sizeSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of glycolytic processSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIISerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of translational initiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of lipid biosynthetic processSerine/threonine-protein kinase mTORHomo sapiens (human)
behavioral response to painSerine/threonine-protein kinase mTORHomo sapiens (human)
rhythmic processSerine/threonine-protein kinase mTORHomo sapiens (human)
oligodendrocyte differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of oligodendrocyte differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
voluntary musculoskeletal movementSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of stress fiber assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of keratinocyte migrationSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleus localizationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionSerine/threonine-protein kinase mTORHomo sapiens (human)
cardiac muscle cell developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
cardiac muscle contractionSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to methionineSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of calcineurin-NFAT signaling cascadeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to amino acid stimulusSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to L-leucineSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to hypoxiaSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to osmotic stressSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of membrane permeabilitySerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cellular response to heatSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of protein localization to nucleusSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of signal transduction by p53 class mediatorSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of transcription of nucleolar large rRNA by RNA polymerase ISerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of wound healing, spreading of epidermal cellsSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of locomotor rhythmSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of cytoplasmic translational initiationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of lysosome organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of pentose-phosphate shuntSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to leucine starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of autophagosome assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
peptidyl-pyroglutamic acid biosynthetic process, using glutaminyl-peptide cyclotransferaseGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
protein modification processGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (29)

Processvia Protein(s)Taxonomy
nitric-oxide synthase activityNitric oxide synthase, brainHomo sapiens (human)
calcium channel regulator activityNitric oxide synthase, brainHomo sapiens (human)
protein bindingNitric oxide synthase, brainHomo sapiens (human)
calmodulin bindingNitric oxide synthase, brainHomo sapiens (human)
FMN bindingNitric oxide synthase, brainHomo sapiens (human)
sodium channel regulator activityNitric oxide synthase, brainHomo sapiens (human)
heme bindingNitric oxide synthase, brainHomo sapiens (human)
tetrahydrobiopterin bindingNitric oxide synthase, brainHomo sapiens (human)
arginine bindingNitric oxide synthase, brainHomo sapiens (human)
transmembrane transporter bindingNitric oxide synthase, brainHomo sapiens (human)
cadmium ion bindingNitric oxide synthase, brainHomo sapiens (human)
calcium-dependent protein bindingNitric oxide synthase, brainHomo sapiens (human)
flavin adenine dinucleotide bindingNitric oxide synthase, brainHomo sapiens (human)
NADP bindingNitric oxide synthase, brainHomo sapiens (human)
scaffold protein bindingNitric oxide synthase, brainHomo sapiens (human)
RNA polymerase III type 1 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
RNA polymerase III type 2 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
RNA polymerase III type 3 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
TFIIIC-class transcription factor complex bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
protein kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein serine/threonine kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
ATP bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
identical protein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
ribosome bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
phosphoprotein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
protein serine kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein bindingGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
zinc ion bindingGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
glutaminyl-peptide cyclotransferase activityGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (35)

Processvia Protein(s)Taxonomy
photoreceptor inner segmentNitric oxide synthase, brainHomo sapiens (human)
nucleoplasmNitric oxide synthase, brainHomo sapiens (human)
cytoplasmNitric oxide synthase, brainHomo sapiens (human)
mitochondrionNitric oxide synthase, brainHomo sapiens (human)
cytosolNitric oxide synthase, brainHomo sapiens (human)
cytoskeletonNitric oxide synthase, brainHomo sapiens (human)
plasma membraneNitric oxide synthase, brainHomo sapiens (human)
sarcoplasmic reticulumNitric oxide synthase, brainHomo sapiens (human)
sarcolemmaNitric oxide synthase, brainHomo sapiens (human)
dendritic spineNitric oxide synthase, brainHomo sapiens (human)
membrane raftNitric oxide synthase, brainHomo sapiens (human)
synapseNitric oxide synthase, brainHomo sapiens (human)
perinuclear region of cytoplasmNitric oxide synthase, brainHomo sapiens (human)
cell peripheryNitric oxide synthase, brainHomo sapiens (human)
protein-containing complexNitric oxide synthase, brainHomo sapiens (human)
plasma membraneNitric oxide synthase, brainHomo sapiens (human)
postsynaptic densityNitric oxide synthase, brainHomo sapiens (human)
cytosolNitric oxide synthase, brainHomo sapiens (human)
nucleusNitric oxide synthase, brainHomo sapiens (human)
PML bodySerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomal membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
cytosolSerine/threonine-protein kinase mTORHomo sapiens (human)
Golgi membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
mitochondrial outer membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomeSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomal membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
endoplasmic reticulum membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
cytosolSerine/threonine-protein kinase mTORHomo sapiens (human)
endomembrane systemSerine/threonine-protein kinase mTORHomo sapiens (human)
membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
dendriteSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC1 complexSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC2 complexSerine/threonine-protein kinase mTORHomo sapiens (human)
phagocytic vesicleSerine/threonine-protein kinase mTORHomo sapiens (human)
nuclear envelopeSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleusSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
extracellular regionGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
specific granule lumenGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
extracellular exosomeGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
tertiary granule lumenGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
ficolin-1-rich granule lumenGlutaminyl-peptide cyclotransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (33)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1195896Inhibition of calmodulin-dependent bovine neuronal NOS using [3H]-arginine as substrate assessed as citrulline formation after 30 mins2015Journal of medicinal chemistry, Feb-12, Volume: 58, Issue:3
Novel 2,4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase.
AID1184069Inhibition of IDO1 (unknown origin) using L-tryptophan substrate incubated for 60 mins in presence of 0.01% Triton-X by HPLC2014European journal of medicinal chemistry, Sep-12, Volume: 84Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors.
AID208344Enhancement of styrene hydrolase activity was determined in male wistar rat hepatic microsomes given to 3-methylcholanthrene treated rats1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID647499Dissociation constant, pKa of the compound2012Journal of medicinal chemistry, Jan-12, Volume: 55, Issue:1
Cyclic hydroxyamidines as amide isosteres: discovery of oxadiazolines and oxadiazines as potent and highly efficacious γ-secretase modulators in vivo.
AID70215Enhancement of epoxide hydrolase activity1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID1775066Cytotoxicity against human HEK293T cells assessed as reduction in cell viability at 200 uM after 7 hrs by DAPI staining based assay2021Journal of medicinal chemistry, 02-25, Volume: 64, Issue:4
Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors.
AID404423Inhibition of nNOS assessed as conversion of L-[3H]arginine to L-[3H]citrulline2008Bioorganic & medicinal chemistry, Jun-01, Volume: 16, Issue:11
Design, synthesis, and evaluation of potential inhibitors of nitric oxide synthase.
AID1893770Inhibition of recombinant human isoQC using H-Gln-AMC hydrobromide as fluorogenic substrate incubated for 6 hrs by fluorometric microplate reader analysis2022ACS medicinal chemistry letters, Sep-08, Volume: 13, Issue:9
2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint.
AID1893771Inhibition of recombinant human QC using H-Gln-AMC hydrobromide as fluorogenic substrate incubated for 6 hrs by fluorometric microplate reader analysis2022ACS medicinal chemistry letters, Sep-08, Volume: 13, Issue:9
2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint.
AID208343Enhanced styrene oxide hydrolase activity pH 8.71985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID1184074Solubility of the compound in pH 6.5 phosphate buffer containing 5% DMSO2014European journal of medicinal chemistry, Sep-12, Volume: 84Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors.
AID69097Dissociation constant when binding to FK506 binding protein (FKBP).1999Journal of medicinal chemistry, Jul-15, Volume: 42, Issue:14
Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein.
AID1775064Inhibition of recombinant human IDO1 expressed in Escherichia coli Rosetta (DE3) cells assessed as reduction in kynurenine production using L-tryptophan as substrate incubated for 20 mins by HPLC analysis2021Journal of medicinal chemistry, 02-25, Volume: 64, Issue:4
Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors.
AID26810Partition coefficient (logP)1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID208348Enhancement of styrene hydrolase activity was determined in male wistar rat hepatic microsomes given to untreated rats1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID208346Enhancement of styrene hydrolase activity was determined in male wistar rat hepatic microsomes given to phenobarbital treated rats1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID208351Maximum enhancement of styrene oxide hydrolase activity was reported at compound concentration of 1e-2M1985Journal of medicinal chemistry, Aug, Volume: 28, Issue:8
Structural features of imidazole derivatives that enhance styrene oxide hydrolase activity in rat hepatic microsomes.
AID1220389Binding affinity to C-terminal His4-tagged CYP2B4 dH/H226Y mutant (unknown origin) after 2 hrs by isothermal titration calorimetric analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Structure and function of cytochromes P450 2B: from mechanism-based inactivators to X-ray crystal structures and back.
AID1796106QC Inhibition Testing from Article 10.1021/jm050756e: \\The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship.\\2006Journal of medicinal chemistry, Jan-26, Volume: 49, Issue:2
The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship.
AID1802600Optical Titration Assay from Article 10.1021/acs.biochem.6b00954: \\Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1.\\2017Biochemistry, 03-21, Volume: 56, Issue:11
Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (37)

TimeframeStudies, This Drug (%)All Drugs %
pre-19908 (21.62)18.7374
1990's11 (29.73)18.2507
2000's6 (16.22)29.6817
2010's8 (21.62)24.3611
2020's4 (10.81)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 20.24

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index20.24 (24.57)
Research Supply Index3.64 (2.92)
Research Growth Index4.58 (4.65)
Search Engine Demand Index18.60 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (20.24)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other37 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]