Page last updated: 2024-12-06

src-820 r

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID63120
CHEMBL ID1458847
SCHEMBL ID9336356
MeSH IDM0043754

Synonyms (32)

Synonym
HMS1689D12
smr000120759
MLS000528184 ,
2-methyl-3-(3-methyl-2-pyridinyl)-4(3h)-quinazolinone
src-820 r
4(3h)-quinazolinone, 2-methyl-3-(3-methyl-2-pyridinyl)-
2-methyl-3-(3-methyl-2-pyridyl)-3,4-dihydroquinazoline-4-one [french]
2-methyl-3-(3-methyl-pyridin-2-yl)-3h-quinazolin-4-one
OPREA1_479332
STK092476
2-methyl-3-(3-methylpyridin-2-yl)quinazolin-4(3h)-one
CBMICRO_043771
BIM-0043573.P001
2-methyl-3-(3-methylpyridin-2-yl)quinazolin-4-one
AKOS000660954
NCGC00245309-01
HMS2191M06
2-methyl-3-(3-methyl-2-pyridyl)-3,4-dihydroquinazoline-4-one
src 820 r
3214-64-0
2-methyl-3-(3'-methyl-2'-pyridyl)-4(3h)-quinazolinone
cid_63120
2-methyl-3-(3-methyl-2-pyridyl)quinazolin-4-one
2-methyl-3-(3-methyl-2-pyridinyl)-4-quinazolinone
bdbm74472
cambridge id 6065100
SCHEMBL9336356
CHEMBL1458847
DTXSID70185919
LZORTVCIUAAACZ-UHFFFAOYSA-N
2-methyl-3-(3-methyl-2-pyridyl)-4-quinazolone
2-methyl-3-(3-methylpyridin-2-yl)-3,4-dihydroquinazolin-4-one
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
thioredoxin reductaseRattus norvegicus (Norway rat)Potency0.08910.100020.879379.4328AID588453
vitamin D3 receptor isoform VDRAHomo sapiens (human)Potency4.46680.354828.065989.1251AID504847
neuropeptide S receptor isoform AHomo sapiens (human)Potency25.11890.015812.3113615.5000AID1461
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
tyrosine-protein phosphatase non-receptor type 22 isoform 1Homo sapiens (human)IC50 (µMol)79.40000.48002.64498.3270AID435024; AID435027
tyrosine-protein phosphatase non-receptor type 7 isoform 2Homo sapiens (human)IC50 (µMol)79.40000.100012.726563.0000AID435032
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (16)

Assay IDTitleYearJournalArticle
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID1159537qHTS screening for TAG (triacylglycerol) accumulators in algae2017Plant physiology, Aug, Volume: 174, Issue:4
Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (9)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (11.11)29.6817
2010's6 (66.67)24.3611
2020's2 (22.22)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.14

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.14 (24.57)
Research Supply Index2.30 (2.92)
Research Growth Index4.44 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.14)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other9 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]