Page last updated: 2024-12-07

3-hydroxy-3-phenacyloxindole

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

3-Hydroxy-3-phenacyloxindole (3HPO) is a potent and selective inhibitor of the enzyme indoleamine 2,3-dioxygenase (IDO). IDO is an enzyme that catalyzes the degradation of tryptophan, an essential amino acid, into kynurenine. Kynurenine is a neurotoxin that has been implicated in the pathogenesis of several neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. 3HPO has been shown to inhibit IDO activity in vitro and in vivo, and it has been shown to be effective in reducing kynurenine levels in the brain. These findings suggest that 3HPO may have therapeutic potential for the treatment of neurological disorders. The compound is typically synthesized via a condensation reaction between isatin and phenacyl bromide, followed by a hydroxylation step. 3HPO is studied due to its potential for treating neurodegenerative diseases, and research is ongoing to optimize its synthesis and explore its potential therapeutic applications.'
```

Cross-References

ID SourceID
PubMed CID99051
CHEMBL ID1328371
SCHEMBL ID3487734
MeSH IDM0071455

Synonyms (39)

Synonym
88730-73-8
3-hydroxy-3-(2-oxo-2-phenylethyl)-1,3-dihydro-2h-indol-2-one
STK727083
nsc169512
nsc-169512
52552-33-7
5322-12-3
IFLAB1_000265
OPREA1_325427
MLS000100502
smr000015419
OPREA1_043684
IDI1_008484
3-hydroxy-3-phenacyl-1h-indol-2-one
AKOS000593038
HMS1412M01
3-hydroxy-3-(2-oxo-2-phenylethyl)indolin-2-one
F0010-0553
AB00080663-04
1,3-dhpio
3-hydroxy-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1h-indol-2-one
CCG-15091
1,3-dihydro-3-hydroxy-3-(2-oxo-2-phenylethyl)-2h-indol-2-one
nsc 169512
3-hydroxy-3-phenacyloxindole
HMS2252D07
AB00080663-01
AKOS016038163
SCHEMBL3487734
CHEMBL1328371
cambridge id 5322123
Z57061613
SR-01000389084-1
sr-01000389084
2-(2,3-dihydroxy-3h-indol-3-yl)-1-phenylethan-1-one
DTXSID90967754
3-hydroxy-3-phenacyl oxindole
3-hydroxy-3-phenacyl-indolin-2-one
CS-0291935
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (3)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency8.91250.044717.8581100.0000AID485294
67.9K proteinVaccinia virusPotency5.01190.00018.4406100.0000AID720579
Guanine nucleotide-binding protein GHomo sapiens (human)Potency7.94331.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (16)

Assay IDTitleYearJournalArticle
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159537qHTS screening for TAG (triacylglycerol) accumulators in algae2017Plant physiology, Aug, Volume: 174, Issue:4
Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (14)

TimeframeStudies, This Drug (%)All Drugs %
pre-19902 (14.29)18.7374
1990's0 (0.00)18.2507
2000's1 (7.14)29.6817
2010's8 (57.14)24.3611
2020's3 (21.43)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 11.76

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index11.76 (24.57)
Research Supply Index2.71 (2.92)
Research Growth Index4.46 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (11.76)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other14 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]