Page last updated: 2024-08-07 15:47:49
Cytochrome P450 3A4
A cytochrome P450 3A4 that is encoded in the genome of human. [PRO:DNx, UniProtKB:P08684]
Synonyms
EC 1.14.14.1;
1,4-cineole 2-exo-monooxygenase;
1,8-cineole 2-exo-monooxygenase;
1.14.14.56;
Albendazole monooxygenase (sulfoxide-forming);
1.14.14.73;
Albendazole sulfoxidase;
CYPIIIA3;
CYPIIIA4;
Cholesterol 25-hydroxy
Research
Bioassay Publications (485)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 6 (1.24) | 18.2507 |
2000's | 96 (19.79) | 29.6817 |
2010's | 315 (64.95) | 24.3611 |
2020's | 68 (14.02) | 2.80 |
Compounds (575)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
beta-alanine | Homo sapiens (human) | IC50 | 2,818.3800 | 1 | 1 |
pyridine | Homo sapiens (human) | IC50 | 4,000.0000 | 1 | 1 |
8-hydroxy-2-(di-n-propylamino)tetralin | Homo sapiens (human) | Ki | 1.0000 | 2 | 2 |
pk 11195 | Homo sapiens (human) | Ki | 0.0071 | 1 | 1 |
1-aminobenzotriazole | Homo sapiens (human) | IC50 | 0.4500 | 1 | 1 |
1-methylimidazole | Homo sapiens (human) | IC50 | 2,697.7400 | 1 | 1 |
pleconaril | Homo sapiens (human) | IC50 | 28.2141 | 2 | 2 |
6-methoxytryptoline | Homo sapiens (human) | Ki | 1.4000 | 1 | 1 |
tacrine | Homo sapiens (human) | IC50 | 19.4667 | 4 | 5 |
acetaminophen | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
acetazolamide | Homo sapiens (human) | Ki | 0.0399 | 8 | 14 |
alosetron | Homo sapiens (human) | IC50 | 0.6000 | 3 | 3 |
astemizole | Homo sapiens (human) | IC50 | 3.3000 | 1 | 1 |
azelastine | Homo sapiens (human) | Ki | 0.0200 | 1 | 1 |
5-methoxypsoralen | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
bmy 7378 | Homo sapiens (human) | Ki | 0.1907 | 2 | 2 |
verapamil | Homo sapiens (human) | IC50 | 16.6238 | 7 | 7 |
candesartan | Homo sapiens (human) | IC50 | 9.0000 | 1 | 0 |
chloroquine | Homo sapiens (human) | IC50 | 349.9450 | 1 | 1 |
cimetidine | Homo sapiens (human) | IC50 | 507.5000 | 2 | 2 |
ciprofloxacin | Homo sapiens (human) | IC50 | 29.3452 | 3 | 3 |
cisapride | Homo sapiens (human) | IC50 | 0.3000 | 1 | 0 |
clotrimazole | Homo sapiens (human) | IC50 | 0.0406 | 5 | 4 |
diclofenac | Homo sapiens (human) | Ki | 1,640.0000 | 1 | 3 |
dichlorphenamide | Homo sapiens (human) | Ki | 0.0500 | 2 | 2 |
donepezil | Homo sapiens (human) | IC50 | 54.6800 | 1 | 1 |
econazole | Homo sapiens (human) | IC50 | 0.5026 | 4 | 3 |
ethoxzolamide | Homo sapiens (human) | Ki | 0.0280 | 2 | 2 |
fluconazole | Homo sapiens (human) | IC50 | 26.4933 | 4 | 4 |
fluoxetine | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
liquid crystal polymer | Homo sapiens (human) | IC50 | 2.7867 | 2 | 3 |
glipizide | Homo sapiens (human) | IC50 | 7.4473 | 1 | 1 |
haloperidol | Homo sapiens (human) | IC50 | 0.0550 | 1 | 1 |
miltefosine | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
hypericin | Homo sapiens (human) | IC50 | 8.7000 | 1 | 1 |
phenelzine | Homo sapiens (human) | IC50 | 2.0000 | 1 | 0 |
idebenone | Homo sapiens (human) | IC50 | 7.0000 | 1 | 0 |
iproniazid | Homo sapiens (human) | IC50 | 6.8500 | 1 | 1 |
isoniazid | Homo sapiens (human) | Ki | 36.0000 | 1 | 1 |
itraconazole | Homo sapiens (human) | IC50 | 0.4256 | 4 | 3 |
ketoconazole | Homo sapiens (human) | IC50 | 1.4592 | 43 | 44 |
ketoconazole | Homo sapiens (human) | Ki | 0.0292 | 3 | 6 |
khellin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
maprotiline | Homo sapiens (human) | IC50 | 4.3220 | 1 | 0 |
methazolamide | Homo sapiens (human) | Ki | 0.0152 | 2 | 2 |
metyrapone | Homo sapiens (human) | IC50 | 2.8659 | 2 | 1 |
miconazole | Homo sapiens (human) | IC50 | 0.4938 | 7 | 6 |
midazolam | Homo sapiens (human) | IC50 | 2.7427 | 3 | 3 |
entinostat | Homo sapiens (human) | IC50 | 0.7300 | 1 | 1 |
nefazodone | Homo sapiens (human) | Ki | 1.0000 | 1 | 3 |
nevirapine | Homo sapiens (human) | IC50 | 0.1810 | 1 | 1 |
nicardipine | Homo sapiens (human) | IC50 | 0.4200 | 1 | 1 |
nifedipine | Homo sapiens (human) | IC50 | 28.4947 | 2 | 2 |
nipecotic acid | Homo sapiens (human) | IC50 | 13.1826 | 1 | 1 |
nu6102 | Homo sapiens (human) | IC50 | 0.0060 | 1 | 1 |
omeprazole | Homo sapiens (human) | IC50 | 77.9830 | 1 | 1 |
ondansetron | Homo sapiens (human) | IC50 | 11.0000 | 1 | 1 |
pentamidine | Homo sapiens (human) | IC50 | 75.0000 | 3 | 3 |
propranolol | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
raloxifene | Homo sapiens (human) | Ki | 9.9000 | 1 | 1 |
ranitidine | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
riluzole | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
risperidone | Homo sapiens (human) | Ki | 0.2240 | 1 | 2 |
sb 206553 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Ki | 14.3000 | 1 | 1 |
vorinostat | Homo sapiens (human) | IC50 | 11.0000 | 2 | 2 |
sulconazole | Homo sapiens (human) | IC50 | 0.0700 | 1 | 0 |
sulfamethizole | Homo sapiens (human) | IC50 | 835.6030 | 1 | 1 |
tazanolast | Homo sapiens (human) | IC50 | 289.7340 | 1 | 1 |
terfenadine | Homo sapiens (human) | IC50 | 0.3200 | 1 | 1 |
wb 4101 | Homo sapiens (human) | Ki | 0.0004 | 1 | 1 |
chloramphenicol | Homo sapiens (human) | Ki | 10.6000 | 1 | 1 |
ethinyl estradiol | Homo sapiens (human) | Ki | 18.0000 | 1 | 1 |
colchicine | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
cytarabine | Homo sapiens (human) | Ki | 190.0000 | 1 | 1 |
1,3-ditolylguanidine | Homo sapiens (human) | Ki | 0.0890 | 1 | 1 |
phenylhydrazine | Homo sapiens (human) | IC50 | 0.9000 | 1 | 0 |
3-hydroxypyridine | Homo sapiens (human) | IC50 | 767.3610 | 1 | 1 |
ergotamine | Homo sapiens (human) | IC50 | 1.0000 | 1 | 0 |
galantamine | Homo sapiens (human) | IC50 | 12.7300 | 1 | 1 |
naphthazarin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
plumbagin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
beta-nicotyrine | Homo sapiens (human) | IC50 | 2.2000 | 1 | 0 |
dihydroergotamine | Homo sapiens (human) | IC50 | 3.9996 | 2 | 1 |
podophyllotoxin | Homo sapiens (human) | IC50 | 0.6000 | 1 | 0 |
3-aminobutyric acid | Homo sapiens (human) | IC50 | 50.1187 | 1 | 1 |
gentian violet | Homo sapiens (human) | IC50 | 3.6337 | 1 | 0 |
formestane | Homo sapiens (human) | IC50 | 58.6000 | 1 | 1 |
anatabine | Homo sapiens (human) | IC50 | 23.0000 | 1 | 0 |
2,2-dimethylbutyric acid | Homo sapiens (human) | IC50 | 10,000.0000 | 7 | 7 |
alpha-naphthoflavone | Homo sapiens (human) | IC50 | 13.3333 | 6 | 6 |
erythromycin | Homo sapiens (human) | IC50 | 41.8050 | 4 | 4 |
2-methylimidazole | Homo sapiens (human) | IC50 | 1,253.1400 | 1 | 1 |
vinblastine | Homo sapiens (human) | IC50 | 26.0000 | 1 | 1 |
2-amino-6-methoxybenzothiazole | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
pimozide | Homo sapiens (human) | IC50 | 9.7000 | 1 | 1 |
anabaseine | Homo sapiens (human) | IC50 | 120.0000 | 1 | 0 |
tranylcypromine | Homo sapiens (human) | IC50 | 3.5850 | 2 | 1 |
acetylglucosamine | Homo sapiens (human) | IC50 | 1.9953 | 1 | 1 |
selegiline | Homo sapiens (human) | IC50 | 0.0039 | 1 | 1 |
bromocriptine | Homo sapiens (human) | IC50 | 2.4996 | 2 | 1 |
benzonidazole | Homo sapiens (human) | IC50 | 98.2000 | 1 | 1 |
clobetasol propionate | Homo sapiens (human) | IC50 | 0.2060 | 1 | 1 |
4-ipomeanol | Homo sapiens (human) | Ki | 20.0000 | 1 | 1 |
etoposide | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
diltiazem | Homo sapiens (human) | IC50 | 109.5533 | 2 | 1 |
diltiazem | Homo sapiens (human) | Ki | 1.3500 | 2 | 2 |
triadimefon | Homo sapiens (human) | IC50 | 9.2897 | 1 | 1 |
mefloquine | Homo sapiens (human) | IC50 | 25.0000 | 4 | 4 |
closantel | Homo sapiens (human) | IC50 | 5.0000 | 1 | 0 |
propiconazole | Homo sapiens (human) | IC50 | 1.0399 | 1 | 1 |
miglustat | Homo sapiens (human) | IC50 | 22.0000 | 1 | 1 |
mifepristone | Homo sapiens (human) | IC50 | 9.5000 | 2 | 2 |
mifepristone | Homo sapiens (human) | Ki | 4.7000 | 2 | 2 |
nitrogenase stabilizing-protective protein, bacteria | Homo sapiens (human) | GI50 | 1.8000 | 1 | 5 |
fadrozole | Homo sapiens (human) | IC50 | 0.0063 | 1 | 1 |
sertindole | Homo sapiens (human) | Ki | 0.0050 | 1 | 2 |
liarozole | Homo sapiens (human) | IC50 | 0.3540 | 2 | 2 |
mibefradil | Homo sapiens (human) | IC50 | 0.2575 | 2 | 4 |
mibefradil | Homo sapiens (human) | Ki | 1.7950 | 2 | 4 |
topotecan | Homo sapiens (human) | IC50 | 1.5211 | 1 | 0 |
aripiprazole | Homo sapiens (human) | Ki | 0.5740 | 1 | 2 |
duloxetine | Homo sapiens (human) | IC50 | 0.4400 | 2 | 2 |
duloxetine | Homo sapiens (human) | Ki | 0.0079 | 1 | 1 |
irinotecan | Homo sapiens (human) | Ki | 24.0000 | 1 | 1 |
ziprasidone | Homo sapiens (human) | Ki | 0.0610 | 1 | 2 |
azalanstat | Homo sapiens (human) | Ki | 0.0280 | 1 | 1 |
mk 0591 | Homo sapiens (human) | IC50 | 2.6029 | 2 | 2 |
2,4(1h,3h)-quinazolinedione | Homo sapiens (human) | Ki | 500.0000 | 1 | 1 |
nelfinavir | Homo sapiens (human) | IC50 | 1.2750 | 2 | 1 |
nelfinavir | Homo sapiens (human) | Ki | 0.4800 | 1 | 1 |
2-adamantanol | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
amprenavir | Homo sapiens (human) | IC50 | 1.0000 | 1 | 0 |
amprenavir | Homo sapiens (human) | Ki | 0.2600 | 1 | 1 |
salvin | Homo sapiens (human) | Ki | 4.3000 | 1 | 1 |
proadifen hydrochloride | Homo sapiens (human) | IC50 | 19.0000 | 1 | 1 |
secoisolariciresinol | Homo sapiens (human) | IC50 | 47.3000 | 1 | 1 |
rutecarpine | Homo sapiens (human) | Ki | 107.7000 | 1 | 1 |
dexverapamil | Homo sapiens (human) | Ki | 6.4600 | 1 | 1 |
mizolastine | Homo sapiens (human) | IC50 | 5.0000 | 1 | 1 |
isopimpinellin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sertraline | Homo sapiens (human) | IC50 | 0.8000 | 1 | 1 |
pirlindole | Homo sapiens (human) | IC50 | 36.0000 | 1 | 1 |
voriconazole | Homo sapiens (human) | IC50 | 7.7500 | 2 | 2 |
timoprazole | Homo sapiens (human) | IC50 | 309.0300 | 1 | 1 |
columbamine | Homo sapiens (human) | IC50 | 30.6000 | 1 | 1 |
jatrorrhizine | Homo sapiens (human) | IC50 | 2.1000 | 1 | 1 |
narciclasine | Homo sapiens (human) | Ki | 0.6303 | 2 | 3 |
eperezolid | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
ergocornine | Homo sapiens (human) | IC50 | 0.5000 | 1 | 0 |
bexarotene | Homo sapiens (human) | IC50 | 5.9000 | 1 | 1 |
clarithromycin | Homo sapiens (human) | Ki | 5.4900 | 1 | 1 |
nicotine | Homo sapiens (human) | IC50 | 26.3000 | 1 | 0 |
lekoptin | Homo sapiens (human) | Ki | 2.9700 | 1 | 1 |
n-(4,4-diphenyl-3-butenyl)nipecotic acid | Homo sapiens (human) | IC50 | 0.6918 | 1 | 1 |
lopinavir | Homo sapiens (human) | Ki | 0.7050 | 1 | 2 |
2-(3,4-dimethoxyphenyl)-5-amino-2-isopropylvaleronitrile | Homo sapiens (human) | Ki | 7.9300 | 1 | 1 |
6-paradol | Homo sapiens (human) | IC50 | 8.1500 | 2 | 2 |
phellopterin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sn 38 | Homo sapiens (human) | Ki | 26.0000 | 1 | 1 |
sr141716 | Homo sapiens (human) | IC50 | 0.0069 | 1 | 1 |
1-(2-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenylethyl)-1h-imidazole | Homo sapiens (human) | IC50 | 0.1033 | 2 | 3 |
norverapamil | Homo sapiens (human) | Ki | 8.0950 | 2 | 2 |
tryptoline | Homo sapiens (human) | Ki | 3.0000 | 1 | 1 |
1-hydroxymethylmidazolam | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine butanol | Homo sapiens (human) | IC50 | 0.8300 | 1 | 1 |
sch 28080 | Homo sapiens (human) | IC50 | 10.5000 | 2 | 2 |
mosapride | Homo sapiens (human) | IC50 | 0.7000 | 1 | 0 |
desethylamodiaquine | Homo sapiens (human) | IC50 | 62.0000 | 4 | 4 |
piperaquine | Homo sapiens (human) | Ki | 0.0900 | 1 | 1 |
ramatroban | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
glabridin | Homo sapiens (human) | IC50 | 73.4000 | 1 | 1 |
glabridin | Homo sapiens (human) | Ki | 7.0000 | 1 | 1 |
l 687384 | Homo sapiens (human) | IC50 | 7.1000 | 1 | 1 |
adenosine amine congener | Homo sapiens (human) | Ki | 0.0104 | 1 | 1 |
sr 11237 | Homo sapiens (human) | IC50 | 12.6000 | 1 | 1 |
agatoxin-489 | Homo sapiens (human) | IC50 | 0.0110 | 1 | 1 |
safinamide | Homo sapiens (human) | IC50 | 0.0210 | 1 | 1 |
abiraterone | Homo sapiens (human) | IC50 | 2.0642 | 7 | 8 |
alpha-ergocryptine | Homo sapiens (human) | IC50 | 0.6000 | 1 | 0 |
docetaxel | Homo sapiens (human) | IC50 | 2.0000 | 1 | 0 |
chs 828 | Homo sapiens (human) | IC50 | 0.0010 | 1 | 1 |
tariquidar | Homo sapiens (human) | IC50 | 100.0000 | 2 | 2 |
5-(3-pyridyl)tetrazole | Homo sapiens (human) | IC50 | 389.0000 | 1 | 0 |
schisantherin a | Homo sapiens (human) | Ki | 0.3990 | 1 | 1 |
5-hydroxy-3',4',6,7-tetramethoxyflavone | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
moxifloxacin | Homo sapiens (human) | IC50 | 79.4328 | 1 | 1 |
3'-deoxycytidine 5'-triphosphate | Homo sapiens (human) | IC50 | 500.0000 | 1 | 1 |
pumosetrag | Homo sapiens (human) | IC50 | 9.3000 | 1 | 1 |
a 195773 | Homo sapiens (human) | IC50 | 2.7000 | 1 | 1 |
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid | Homo sapiens (human) | Ki | 0.0220 | 1 | 1 |
tipifarnib | Homo sapiens (human) | IC50 | 2.8800 | 2 | 2 |
isolariciresinol | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
anidulafungin | Homo sapiens (human) | IC50 | 17.5000 | 1 | 1 |
22s-hydroxycholesterol | Homo sapiens (human) | Ki | 0.1800 | 1 | 1 |
8-gingerol | Homo sapiens (human) | IC50 | 10.2667 | 3 | 3 |
10-gingerol | Homo sapiens (human) | IC50 | 22.5000 | 3 | 3 |
5-methoxytryptoline | Homo sapiens (human) | Ki | 0.0750 | 1 | 1 |
4,9-dihydro-7-methoxy-3h-pyrido(3,4b)indole | Homo sapiens (human) | Ki | 10.0000 | 1 | 1 |
sb 203580 | Homo sapiens (human) | IC50 | 0.0620 | 1 | 1 |
erlotinib | Homo sapiens (human) | IC50 | 0.0160 | 1 | 1 |
erlotinib | Homo sapiens (human) | Ki | 6.3000 | 1 | 3 |
limonin | Homo sapiens (human) | Ki | 23.2000 | 1 | 1 |
pseudoprotopine | Homo sapiens (human) | IC50 | 80.0000 | 1 | 1 |
dihydrocubebin | Homo sapiens (human) | Ki | 0.1420 | 1 | 1 |
etravirine | Homo sapiens (human) | IC50 | 0.0190 | 1 | 1 |
rs 127445 | Homo sapiens (human) | Ki | 0.0003 | 1 | 1 |
hydrastine | Homo sapiens (human) | Ki | 110.0000 | 1 | 1 |
troleandomycin | Homo sapiens (human) | IC50 | 27.5997 | 5 | 5 |
anabasine | Homo sapiens (human) | IC50 | 32.4000 | 1 | 0 |
sorafenib | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
n-(3-chloro-7-indolyl)-1,4-benzenedisulphonamide | Homo sapiens (human) | Ki | 0.0137 | 2 | 2 |
sr 142806 | Homo sapiens (human) | IC50 | 1.0000 | 1 | 1 |
cp 101,606 | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
sitosterol, (3beta)-isomer | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
lariciresinol | Homo sapiens (human) | IC50 | 25.6000 | 1 | 1 |
ritonavir | Homo sapiens (human) | IC50 | 0.1623 | 7 | 6 |
ritonavir | Homo sapiens (human) | Ki | 0.1000 | 2 | 2 |
naringenin | Homo sapiens (human) | IC50 | 3.3000 | 1 | 1 |
quinidine | Homo sapiens (human) | IC50 | 39.0000 | 2 | 2 |
saquinavir | Homo sapiens (human) | IC50 | 1.5000 | 1 | 1 |
saquinavir | Homo sapiens (human) | Ki | 0.1700 | 1 | 1 |
hyperforin | Homo sapiens (human) | IC50 | 2.3000 | 1 | 1 |
linezolid | Homo sapiens (human) | IC50 | 20.0000 | 2 | 2 |
myosmine | Homo sapiens (human) | IC50 | 187.0000 | 1 | 0 |
gingerol | Homo sapiens (human) | IC50 | 32.2333 | 3 | 3 |
yatein | Homo sapiens (human) | Ki | 0.1770 | 1 | 1 |
hinokinin | Homo sapiens (human) | Ki | 0.3730 | 1 | 1 |
sb 221284 | Homo sapiens (human) | IC50 | 100.0000 | 2 | 2 |
sb 228357 | Homo sapiens (human) | IC50 | 9.0000 | 1 | 1 |
sb 243213 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
1-O-Acetyllycorine | Homo sapiens (human) | Ki | 7.7716 | 1 | 2 |
dihydroergocristine monomesylate | Homo sapiens (human) | IC50 | 3.0000 | 1 | 0 |
resveratrol | Homo sapiens (human) | IC50 | 8.1500 | 2 | 1 |
resveratrol | Homo sapiens (human) | Ki | 20.0000 | 1 | 1 |
tacrolimus | Homo sapiens (human) | IC50 | 0.5800 | 3 | 2 |
zithromax | Homo sapiens (human) | IC50 | 10.0000 | 2 | 2 |
adenosine-5'-(n-ethylcarboxamide) | Homo sapiens (human) | Ki | 0.0068 | 1 | 1 |
ketoconazole | Homo sapiens (human) | IC50 | 1.1187 | 45 | 46 |
wr-142,490 | Homo sapiens (human) | IC50 | 29.7500 | 4 | 4 |
conidendrin | Homo sapiens (human) | IC50 | 0.2000 | 1 | 1 |
tenofovir | Homo sapiens (human) | IC50 | 45.8000 | 1 | 1 |
ravuconazole | Homo sapiens (human) | IC50 | 1.0100 | 1 | 1 |
posaconazole | Homo sapiens (human) | IC50 | 0.2458 | 5 | 5 |
l 731988 | Homo sapiens (human) | IC50 | 0.1700 | 1 | 1 |
Euchrestaflavanone A | Homo sapiens (human) | IC50 | 62.4000 | 1 | 1 |
abt 492 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
bay 57-1293 | Homo sapiens (human) | Ki | 0.1824 | 3 | 9 |
bms-488043 | Homo sapiens (human) | IC50 | 40.0000 | 2 | 2 |
isoliquiritigenin | Homo sapiens (human) | IC50 | 0.2690 | 1 | 1 |
cannabidiol | Homo sapiens (human) | Ki | 1.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | IC50 | 0.5800 | 1 | 1 |
tiamulin | Homo sapiens (human) | IC50 | 1.6000 | 1 | 1 |
n(6)-cyclopentyladenosine | Homo sapiens (human) | Ki | 0.0018 | 1 | 1 |
pongamol | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
cotinine | Homo sapiens (human) | IC50 | 400.0000 | 1 | 0 |
huperzine a | Homo sapiens (human) | IC50 | 0.1200 | 1 | 1 |
umi-77 | Homo sapiens (human) | Ki | 8.1900 | 1 | 1 |
nipecotic acid | Homo sapiens (human) | IC50 | 8.5114 | 1 | 1 |
digoxin | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
n-hydroxy-n'-(4-butyl-2-methylphenyl)formamidine | Homo sapiens (human) | IC50 | 45.5000 | 3 | 3 |
tamoxifen | Homo sapiens (human) | Ki | 0.2000 | 1 | 1 |
cid 2858522 | Homo sapiens (human) | IC50 | 3.0000 | 1 | 1 |
lch-7749944 | Homo sapiens (human) | IC50 | 14.9000 | 1 | 1 |
maraviroc | Homo sapiens (human) | IC50 | 9.0000 | 2 | 2 |
telaprevir | Homo sapiens (human) | Ki | 0.0820 | 1 | 1 |
6-methyl-2-(phenylethynyl)pyridine | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
orlistat | Homo sapiens (human) | IC50 | 0.4200 | 1 | 1 |
7-benzyloxyquinoline | Homo sapiens (human) | IC50 | 25.0000 | 2 | 2 |
thioperamide | Homo sapiens (human) | IC50 | 6.0954 | 1 | 1 |
desdimethyltamoxifen | Homo sapiens (human) | Ki | 7.3000 | 2 | 2 |
vx-745 | Homo sapiens (human) | IC50 | 20.0004 | 2 | 2 |
silybin | Homo sapiens (human) | Ki | 98.6667 | 2 | 3 |
sb 242084 | Homo sapiens (human) | IC50 | 100.0000 | 2 | 2 |
gl-4 | Homo sapiens (human) | Ki | 29.8000 | 1 | 1 |
quercetin | Homo sapiens (human) | IC50 | 15.6667 | 3 | 3 |
bergaptol | Homo sapiens (human) | IC50 | 24.9200 | 1 | 1 |
calcitriol | Homo sapiens (human) | IC50 | 0.0093 | 1 | 1 |
calcitriol | Homo sapiens (human) | Ki | 0.0001 | 1 | 1 |
rutin | Homo sapiens (human) | IC50 | 80.0000 | 1 | 1 |
3-methylkaempferol | Homo sapiens (human) | IC50 | 36.2000 | 1 | 1 |
amphotericin b | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
isobavachalcone | Homo sapiens (human) | IC50 | 27.3000 | 1 | 1 |
baicalein | Homo sapiens (human) | IC50 | 9.2000 | 1 | 1 |
chrysin | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
shogaol | Homo sapiens (human) | IC50 | 40.8500 | 2 | 2 |
cyclosporine | Homo sapiens (human) | IC50 | 3.7340 | 4 | 5 |
cyclosporine | Homo sapiens (human) | Ki | 6.0550 | 2 | 4 |
sirolimus | Homo sapiens (human) | IC50 | 2.0000 | 1 | 0 |
topiramate | Homo sapiens (human) | Ki | 0.0100 | 1 | 1 |
geldanamycin | Homo sapiens (human) | IC50 | 0.0140 | 1 | 1 |
morphine | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
istradefylline | Homo sapiens (human) | IC50 | 40.0000 | 1 | 1 |
lacidipine | Homo sapiens (human) | IC50 | 0.9000 | 1 | 0 |
sb 223412 | Homo sapiens (human) | IC50 | 4.0000 | 1 | 1 |
vinorelbine | Homo sapiens (human) | IC50 | 1.0000 | 1 | 0 |
kaempferol 3-o-rhamnoside | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
eurycarpin b | Homo sapiens (human) | IC50 | 66.3000 | 1 | 1 |
tiliroside | Homo sapiens (human) | IC50 | 0.7000 | 1 | 1 |
ermanin | Homo sapiens (human) | IC50 | 21.8000 | 1 | 1 |
oxiconazole | Homo sapiens (human) | IC50 | 0.0900 | 1 | 0 |
indinavir sulfate | Homo sapiens (human) | IC50 | 0.2000 | 3 | 4 |
indinavir sulfate | Homo sapiens (human) | Ki | 0.4800 | 1 | 1 |
bedaquiline | Homo sapiens (human) | IC50 | 35.0000 | 4 | 4 |
zerumbone | Homo sapiens (human) | IC50 | 21.8000 | 1 | 1 |
2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone | Homo sapiens (human) | IC50 | 32,464.1500 | 1 | 2 |
bergamottin | Homo sapiens (human) | IC50 | 2.4200 | 1 | 1 |
bergamottin | Homo sapiens (human) | Ki | 7.7000 | 1 | 1 |
narcissin flavonol | Homo sapiens (human) | IC50 | 80.0000 | 1 | 1 |
l 754394 | Homo sapiens (human) | Ki | 7.5000 | 1 | 1 |
aliskiren | Homo sapiens (human) | IC50 | 0.0004 | 1 | 1 |
bms 806 | Homo sapiens (human) | IC50 | 40.0000 | 2 | 2 |
4-hydroxylonchocarpin | Homo sapiens (human) | IC50 | 74.1000 | 1 | 1 |
gw-5074 | Homo sapiens (human) | IC50 | 0.2300 | 1 | 1 |
mdl 73811 | Homo sapiens (human) | IC50 | 5.0000 | 1 | 1 |
6',7'-dihydroxybergamottin | Homo sapiens (human) | Ki | 32.2800 | 2 | 2 |
laq824 | Homo sapiens (human) | IC50 | 14.0000 | 1 | 1 |
axitinib | Homo sapiens (human) | IC50 | 0.0460 | 1 | 1 |
rilpivirine | Homo sapiens (human) | IC50 | 1.7406 | 5 | 5 |
scy-635 | Homo sapiens (human) | IC50 | 58.5000 | 1 | 1 |
opc-67683 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
nipecotic acid, (s)-isomer | Homo sapiens (human) | IC50 | 74.1310 | 1 | 1 |
ispinesib | Homo sapiens (human) | IC50 | 4.1000 | 1 | 1 |
fk 866 | Homo sapiens (human) | IC50 | 0.0010 | 1 | 1 |
vilazodone | Homo sapiens (human) | IC50 | 21.3000 | 1 | 1 |
(3S,6S,9S,12R)-3-[(2S)-Butan-2-yl]-6-[(1-methoxyindol-3-yl)methyl]-9-(6-oxooctyl)-1,4,7,10-tetrazabicyclo[10.4.0]hexadecane-2,5,8,11-tetrone | Homo sapiens (human) | IC50 | 0.0110 | 1 | 1 |
belinostat | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sun | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
bufalin | Homo sapiens (human) | IC50 | 5.8800 | 2 | 2 |
bufalin | Homo sapiens (human) | Ki | 11.0150 | 2 | 2 |
bis(7)-tacrine | Homo sapiens (human) | IC50 | 0.0053 | 1 | 2 |
3-((2-methyl-1,3-thiazol-4-yl)ethynyl)piperidine | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
dov 216303 | Homo sapiens (human) | IC50 | 1.3000 | 1 | 1 |
orteronel | Homo sapiens (human) | IC50 | 20.0000 | 2 | 2 |
r 115866 | Homo sapiens (human) | IC50 | 0.0005 | 1 | 1 |
ts-011 | Homo sapiens (human) | IC50 | 0.1000 | 1 | 1 |
rwj 68354 | Homo sapiens (human) | IC50 | 1.0000 | 1 | 0 |
n-(5-adamantane-1-yl-methoxy-pentyl)deoxynojirimycin | Homo sapiens (human) | IC50 | 0.0900 | 1 | 1 |
gw 803430 | Homo sapiens (human) | IC50 | 1.6000 | 1 | 1 |
lu 28-179 | Homo sapiens (human) | IC50 | 2.0000 | 1 | 1 |
licochalcone c | Homo sapiens (human) | IC50 | 57.0000 | 1 | 1 |
biln 2061 | Homo sapiens (human) | Ki | 0.0240 | 1 | 1 |
sb-505124 | Homo sapiens (human) | IC50 | 0.0438 | 1 | 1 |
mocetinostat | Homo sapiens (human) | IC50 | 0.5700 | 1 | 1 |
osi 930 | Homo sapiens (human) | Ki | 24.0000 | 1 | 1 |
orteronel | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
pi103 | Homo sapiens (human) | IC50 | 0.0111 | 2 | 3 |
2-((aminocarbonyl)amino)-5-(4-fluorophenyl)-3-thiophenecarboxamide | Homo sapiens (human) | IC50 | 0.0200 | 1 | 1 |
dirlotapide | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
tofacitinib | Homo sapiens (human) | IC50 | 0.0150 | 1 | 1 |
darapladib | Homo sapiens (human) | IC50 | 27.0000 | 1 | 1 |
linaprazan | Homo sapiens (human) | IC50 | 10.8500 | 4 | 4 |
chf 5074 | Homo sapiens (human) | IC50 | 48.0000 | 1 | 1 |
1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene | Homo sapiens (human) | Ki | 0.4700 | 1 | 1 |
pimavanserin | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
hetacillin | Homo sapiens (human) | IC50 | 85.6000 | 1 | 1 |
ly-2157299 | Homo sapiens (human) | IC50 | 0.1000 | 1 | 1 |
delta-viniferin | Homo sapiens (human) | IC50 | 8.9300 | 1 | 1 |
linagliptin | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | IC50 | 0.0300 | 1 | 1 |
phenobarbital sodium | Homo sapiens (human) | IC50 | 0.0011 | 1 | 1 |
phenobarbital sodium | Homo sapiens (human) | Ki | 0.0004 | 2 | 2 |
way 181187 | Homo sapiens (human) | IC50 | 152.0000 | 2 | 7 |
6-(3-hydroxyphenyl)-2-naphthol | Homo sapiens (human) | IC50 | 1.5800 | 1 | 1 |
artenimol | Homo sapiens (human) | IC50 | 125.0000 | 1 | 2 |
ar c155858 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
int 131 | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
gw 842166x | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | IC50 | 0.0010 | 2 | 2 |
gsk 369796 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
ps 540446 | Homo sapiens (human) | IC50 | 18.0000 | 1 | 1 |
biapigenin | Homo sapiens (human) | IC50 | 0.0800 | 1 | 1 |
sb-435495 | Homo sapiens (human) | IC50 | 10.0000 | 2 | 2 |
anabaenopeptin b | Homo sapiens (human) | IC50 | 50.8000 | 2 | 2 |
bms 599626 | Homo sapiens (human) | IC50 | 1.6000 | 1 | 1 |
snap 5114 | Homo sapiens (human) | IC50 | 30.8270 | 3 | 3 |
sl0101 | Homo sapiens (human) | IC50 | 20.6000 | 1 | 1 |
Kanzonol B | Homo sapiens (human) | IC50 | 44.3000 | 1 | 1 |
nbi 42902 | Homo sapiens (human) | IC50 | 0.7000 | 1 | 1 |
n-(3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl)-2-methyl-2-((5-(trifluoromethyl)pyridin-2-yl)oxy)propanamide | Homo sapiens (human) | IC50 | 0.0003 | 1 | 1 |
brivanib | Homo sapiens (human) | IC50 | 19.0070 | 4 | 4 |
bms 477118 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
eluxadoline | Homo sapiens (human) | Ki | 0.0550 | 1 | 1 |
abt 102 | Homo sapiens (human) | IC50 | 0.0040 | 1 | 1 |
amd 070 | Homo sapiens (human) | IC50 | 13.3350 | 2 | 2 |
azd1981 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
dg 041 | Homo sapiens (human) | IC50 | 4.5500 | 2 | 2 |
bms-626529 | Homo sapiens (human) | IC50 | 17.0000 | 3 | 3 |
gsk221149a | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | IC50 | 0.0593 | 1 | 1 |
r 1487 | Homo sapiens (human) | IC50 | 40.0000 | 1 | 1 |
alogliptin | Homo sapiens (human) | IC50 | 46.6667 | 3 | 3 |
oc000459 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
azd 8931 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
gosogliptin | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
quisinostat | Homo sapiens (human) | IC50 | 0.0001 | 1 | 1 |
ce 224,535 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | IC50 | 79.4328 | 1 | 1 |
apremilast | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
mrk 560 | Homo sapiens (human) | IC50 | 12.9500 | 2 | 2 |
gw9508 | Homo sapiens (human) | IC50 | 33.0000 | 1 | 1 |
glabrol | Homo sapiens (human) | IC50 | 37.5000 | 1 | 1 |
crizotinib | Homo sapiens (human) | IC50 | 12.5000 | 1 | 1 |
5-(5,6-dimethoxy-1-benzimidazolyl)-3-[(2-methylsulfonylphenyl)methoxy]-2-thiophenecarbonitrile | Homo sapiens (human) | IC50 | 50.1187 | 1 | 1 |
epelsiban | Homo sapiens (human) | IC50 | 100.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | IC50 | 12.5000 | 1 | 1 |
chir-265 | Homo sapiens (human) | IC50 | 0.1400 | 1 | 1 |
fostamatinib | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
in 1130 | Homo sapiens (human) | IC50 | 0.0196 | 1 | 1 |
jnj 28312141 | Homo sapiens (human) | IC50 | 4.8000 | 1 | 1 |
mk-0249 | Homo sapiens (human) | IC50 | 27.0000 | 1 | 1 |
ku-0060648 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sar 1118 | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
scopolamine hydrobromide | Homo sapiens (human) | IC50 | 0.0006 | 1 | 1 |
(R)-(+)-6',7'-dihydroxybergamottin | Homo sapiens (human) | IC50 | 1.1950 | 2 | 2 |
odoratin | Homo sapiens (human) | IC50 | 70.0000 | 1 | 1 |
dihydrotetrabenazine, (2alpha,3beta,11bbeta)-isomer | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
mgl-3196 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
gsk188909 | Homo sapiens (human) | IC50 | 1.0000 | 2 | 2 |
trelagliptin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
n-(3-fluorophenyl)-1-((4-(((3s)-3-methyl-1-piperazinyl)methyl)phenyl)acetyl)-4-piperidinamine | Homo sapiens (human) | IC50 | 47.5000 | 2 | 2 |
amodiaquine hydrochloride | Homo sapiens (human) | IC50 | 64.0000 | 4 | 4 |
azamulin | Homo sapiens (human) | IC50 | 0.2400 | 1 | 1 |
vtp-27999 | Homo sapiens (human) | IC50 | 0.0005 | 1 | 1 |
cct129202 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
vx-770 | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
pamapimod | Homo sapiens (human) | IC50 | 29.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | IC50 | 0.0270 | 2 | 2 |
ro5126766 | Homo sapiens (human) | IC50 | 0.1600 | 1 | 1 |
bms 687453 | Homo sapiens (human) | IC50 | 40.0000 | 1 | 1 |
gsk 1004723 | Homo sapiens (human) | IC50 | 0.3000 | 1 | 1 |
cct 128930 | Homo sapiens (human) | IC50 | 30.0000 | 2 | 2 |
gdc 0941 | Homo sapiens (human) | IC50 | 0.0033 | 1 | 1 |
lu aa33810 | Homo sapiens (human) | IC50 | 4.1000 | 1 | 1 |
fevipiprant | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
a 867744 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
azd3988 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
azd1283 | Homo sapiens (human) | IC50 | 5.0118 | 3 | 4 |
gsk1482160 | Homo sapiens (human) | IC50 | 0.0516 | 3 | 4 |
serlopitant | Homo sapiens (human) | IC50 | 39.0000 | 1 | 1 |
pf 04457845 | Homo sapiens (human) | IC50 | 30.0000 | 2 | 2 |
gdc 0449 | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
bms 754807 | Homo sapiens (human) | IC50 | 23.5000 | 2 | 2 |
bms 777607 | Homo sapiens (human) | IC50 | 12.5000 | 1 | 1 |
delanzomib | Homo sapiens (human) | IC50 | 3.5000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | IC50 | 12.9945 | 4 | 4 |
ponatinib | Homo sapiens (human) | IC50 | 11.4000 | 1 | 1 |
N-cyclopropyl-3-{4-[(cyclopropylmethyl)carbamoyl]phenyl}-4-methylbenzamide | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | IC50 | 19.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | IC50 | 32.0000 | 1 | 1 |
sch772984 | Homo sapiens (human) | IC50 | 6,750.0000 | 2 | 2 |
at13148 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 0 |
rg 1678 | Homo sapiens (human) | Ki | 0.0470 | 1 | 1 |
pf 3246799 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
cobicistat | Homo sapiens (human) | IC50 | 0.1500 | 1 | 1 |
bms-790052 | Homo sapiens (human) | IC50 | 7.2000 | 3 | 3 |
glasdegib | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | IC50 | 0.0016 | 2 | 3 |
act-462206 | Homo sapiens (human) | IC50 | 15.0000 | 1 | 1 |
azd7687 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
GDC-0623 | Homo sapiens (human) | IC50 | 10.0000 | 2 | 2 |
mk 2461 | Homo sapiens (human) | IC50 | 7.1000 | 1 | 1 |
osilodrostat | Homo sapiens (human) | IC50 | 0.0029 | 1 | 1 |
e-52862 | Homo sapiens (human) | IC50 | 10.0000 | 2 | 2 |
p505-15 | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
bi 653048 bs h3po4 | Homo sapiens (human) | IC50 | 8.0000 | 1 | 1 |
bms 694153 | Homo sapiens (human) | IC50 | 21.3000 | 5 | 5 |
n6022 | Homo sapiens (human) | IC50 | 0.0200 | 1 | 1 |
mk-8033 | Homo sapiens (human) | IC50 | 14.7300 | 1 | 2 |
mk-7246 | Homo sapiens (human) | IC50 | 27.2500 | 4 | 4 |
sofosbuvir | Homo sapiens (human) | IC50 | 8.4000 | 1 | 1 |
abt-348 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | IC50 | 0.0190 | 1 | 1 |
(3R)-4-[2-(1H-indol-4-yl)-6-(1-methylsulfonylcyclopropyl)-4-pyrimidinyl]-3-methylmorpholine | Homo sapiens (human) | IC50 | 5.0025 | 2 | 2 |
bms-605339 | Homo sapiens (human) | IC50 | 2.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | IC50 | 0.0760 | 1 | 1 |
jq1 compound | Homo sapiens (human) | IC50 | 0.0528 | 2 | 2 |
gsk525762a | Homo sapiens (human) | IC50 | 27.6978 | 3 | 3 |
glpg0634 | Homo sapiens (human) | IC50 | 85.0000 | 2 | 2 |
kaf156 | Homo sapiens (human) | IC50 | 6.0000 | 2 | 2 |
kaf156 | Homo sapiens (human) | Ki | 0.1560 | 1 | 1 |
bms-911543 | Homo sapiens (human) | IC50 | 0.0660 | 1 | 1 |
(5s,6s,9r)-5-amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5h-cyclohepta(b)pyridin-9-yl 4-(2-oxo-2,3-dihydro-1h-imidazo(4,5-b)pyridin-1-yl)piperidine-1-carboxylate | Homo sapiens (human) | IC50 | 17.0000 | 2 | 2 |
gsk1210151a | Homo sapiens (human) | IC50 | 9.7000 | 4 | 4 |
i-bet726 | Homo sapiens (human) | IC50 | 26.5000 | 2 | 2 |
ml298 | Homo sapiens (human) | IC50 | 17.6000 | 1 | 1 |
lesinurad | Homo sapiens (human) | IC50 | 45.9333 | 1 | 3 |
gsk2656157 | Homo sapiens (human) | IC50 | 0.2450 | 2 | 2 |
7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2,3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2,3-d)pyrimidin-4-amine | Homo sapiens (human) | IC50 | 0.0300 | 1 | 1 |
raltegravir | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
piroxicam | Homo sapiens (human) | IC50 | 1,000.0000 | 1 | 1 |
rk 682 | Homo sapiens (human) | IC50 | 4.6000 | 1 | 1 |
teriflunomide | Homo sapiens (human) | IC50 | 0.3000 | 1 | 2 |
pf 00868554 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
dolutegravir | Homo sapiens (human) | IC50 | 67.0000 | 1 | 1 |
ew-7197 | Homo sapiens (human) | IC50 | 0.0165 | 1 | 1 |
byl719 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
cep-28122 | Homo sapiens (human) | IC50 | 0.0019 | 1 | 1 |
pbtz169 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
cep 33779 | Homo sapiens (human) | IC50 | 11.0000 | 1 | 1 |
gsk2336805 | Homo sapiens (human) | IC50 | 33.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | IC50 | 3.3600 | 1 | 1 |
vu0364572 | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
MK-8353 | Homo sapiens (human) | IC50 | 3.3500 | 2 | 2 |
cfi-400945 | Homo sapiens (human) | IC50 | 3.8500 | 2 | 2 |
armeniaspirol a | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
vx-970 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
gs-9973 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
gne-618 | Homo sapiens (human) | IC50 | 0.0040 | 1 | 1 |
g007-lk | Homo sapiens (human) | IC50 | 12.5290 | 2 | 2 |
gne-617 | Homo sapiens (human) | IC50 | 0.0020 | 1 | 1 |
amg319 | Homo sapiens (human) | IC50 | 27.0000 | 1 | 1 |
n-((3-isopropylisoxazol-5-yl)methyl)-4-methoxy-3-((1-methylpiperidin-4-yl)oxy)benzamide | Homo sapiens (human) | IC50 | 30.0000 | 2 | 2 |
xen445 | Homo sapiens (human) | IC50 | 0.2370 | 1 | 1 |
vu0467154 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
onc201 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
vt-1161 | Homo sapiens (human) | IC50 | 65.0000 | 2 | 2 |
azd3759 | Homo sapiens (human) | IC50 | 0.0500 | 1 | 1 |
MLI-2 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
PF-06446846 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
3-chloro-5-(6-(5-fluoropyridin-2-yl)pyrimidin-4-yl)benzonitrile | Homo sapiens (human) | IC50 | 15.8489 | 1 | 1 |
at 9283 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
((5z)5-(1,3-benzodioxol-5-yl)methylene-2-phenylamino-3,5-dihydro-4h-imidazol-4-one) | Homo sapiens (human) | IC50 | 0.0710 | 1 | 1 |
clozapine | Homo sapiens (human) | Ki | 0.0170 | 1 | 2 |
olanzapine | Homo sapiens (human) | Ki | 0.0060 | 1 | 2 |
4-hydroxyquinazoline | Homo sapiens (human) | Ki | 500.0000 | 1 | 1 |
2-[(4-chlorophenyl)methylthio]-1,5,6,7-tetrahydrocyclopenta[d]pyrimidin-4-one | Homo sapiens (human) | IC50 | 20.0000 | 2 | 2 |
aprepitant | Homo sapiens (human) | IC50 | 0.0460 | 1 | 1 |
mk 6892 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
xav939 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | IC50 | 1.0000 | 1 | 1 |
bms 536924 | Homo sapiens (human) | IC50 | 1.1418 | 6 | 6 |
4-[[(4-oxo-1,5,6,7-tetrahydrocyclopenta[d]pyrimidin-2-yl)thio]methyl]benzoic acid methyl ester | Homo sapiens (human) | IC50 | 20.0000 | 2 | 2 |
XL413 | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
amg 221 | Homo sapiens (human) | IC50 | 15.0000 | 1 | 1 |
thiamet g | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
as1940477 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
Drugs with Activation Measurements
Drugs with Other Measurements
Synthesis, biological evaluation, and docking studies of tetrahydrofuran- cyclopentanone- and cyclopentanol-based ligands acting at adrenergic α₁- and serotonine 5-HT1A receptors.Journal of medicinal chemistry, , Jan-12, Volume: 55, Issue:1, 2012
Structure-activity relationships in 1,4-benzodioxan-related compounds. 9. From 1,4-benzodioxane to 1,4-dioxane ring as a promising template of novel alpha1D-adrenoreceptor antagonists, 5-HT1A full agonists, and cytotoxic agents.Journal of medicinal chemistry, , Oct-23, Volume: 51, Issue:20, 2008
Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment.Bioorganic & medicinal chemistry, , 07-23, Volume: 26, Issue:12, 2018
Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity.Bioorganic & medicinal chemistry letters, , 06-01, Volume: 27, Issue:11, 2017
Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach.European journal of medicinal chemistry, , Oct-04, Volume: 121, 2016
Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.Bioorganic & medicinal chemistry, , Sep-01, Volume: 21, Issue:17, 2013
Design, Synthesis, and X-ray of Selenides as New Class of Agents for Prevention of Diabetic Cerebrovascular Pathology.ACS medicinal chemistry letters, , May-10, Volume: 9, Issue:5, 2018
Coumarins and other fused bicyclic heterocycles with selective tumor-associated carbonic anhydrase isoforms inhibitory activity.Bioorganic & medicinal chemistry, , 01-15, Volume: 25, Issue:2, 2017
Lead Development of Thiazolylsulfonamides with Carbonic Anhydrase Inhibitory Action.Journal of medicinal chemistry, , 04-13, Volume: 60, Issue:7, 2017
Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII.Bioorganic & medicinal chemistry, , Nov-01, Volume: 23, Issue:21, 2015
Carbonic anhydrase inhibitors. Synthesis of a novel series of 5-substituted 2,4-dichlorobenzenesulfonamides and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII.European journal of medicinal chemistry, , Jul-23, Volume: 82, 2014
The discovery of diazepinone-based 5-HT3 receptor partial agonists.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 24, Issue:11, 2014
Novel serotonin type 3 receptor partial agonists for the potential treatment of irritable bowel syndrome.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 21, Issue:1, 2011
Discovery of 2-substituted benzoxazole carboxamides as 5-HT3 receptor antagonists.Bioorganic & medicinal chemistry letters, , Nov-15, Volume: 20, Issue:22, 2010
Synthesis, biological evaluation, and docking studies of tetrahydrofuran- cyclopentanone- and cyclopentanol-based ligands acting at adrenergic α₁- and serotonine 5-HT1A receptors.Journal of medicinal chemistry, , Jan-12, Volume: 55, Issue:1, 2012
Structure-activity relationships in 1,4-benzodioxan-related compounds. 9. From 1,4-benzodioxane to 1,4-dioxane ring as a promising template of novel alpha1D-adrenoreceptor antagonists, 5-HT1A full agonists, and cytotoxic agents.Journal of medicinal chemistry, , Oct-23, Volume: 51, Issue:20, 2008
[no title available]Journal of medicinal chemistry, , 10-14, Volume: 64, Issue:19, 2021
[no title available]Journal of medicinal chemistry, , 11-11, Volume: 64, Issue:21, 2021
[no title available]Journal of medicinal chemistry, , 12-24, Volume: 63, Issue:24, 2020
[no title available]Journal of medicinal chemistry, , 06-11, Volume: 63, Issue:11, 2020
Discovery of 5-Cyano-6-phenylpyrimidin Derivatives Containing an Acylurea Moiety as Orally Bioavailable Reversal Agents against P-Glycoprotein-Mediated Mutidrug Resistance.Journal of medicinal chemistry, , Jul-26, Volume: 61, Issue:14, 2018
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Novel C-7 carbon substituted fourth generation fluoroquinolones targeting N. Gonorrhoeae infections.Bioorganic & medicinal chemistry letters, , 10-15, Volume: 30, Issue:20, 2020
A novel synthesis of 2-arylbenzimidazoles in molecular sieves-MeOH system and their antitubercular activity.Bioorganic & medicinal chemistry, , 08-15, Volume: 26, Issue:15, 2018
Imidazopyrazinones (IPYs): Non-Quinolone Bacterial Topoisomerase Inhibitors Showing Partial Cross-Resistance with Quinolones.Journal of medicinal chemistry, , 04-26, Volume: 61, Issue:8, 2018
Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles.European journal of medicinal chemistry, , Oct-01, Volume: 179, 2019
Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 29, Issue:16, 2019
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4.The Journal of biological chemistry, , Mar-02, Volume: 282, Issue:9, 2007
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
[no title available],
Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 29, Issue:16, 2019
Investigation of multi-target-directed ligands (MTDLs) with butyrylcholinesterase (BuChE) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition: The design, synthesis of miconazole analogues targeting Alzheimer's disease.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
[no title available],
Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles.European journal of medicinal chemistry, , Oct-01, Volume: 179, 2019
Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 29, Issue:16, 2019
Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 27, Issue:15, 2017
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Synopsis of some recent tactical application of bioisosteres in drug design.Journal of medicinal chemistry, , Apr-28, Volume: 54, Issue:8, 2011
Sigma ligands with subnanomolar affinity and preference for the sigma 2 binding site. 1. 3-(omega-aminoalkyl)-1H-indoles.Journal of medicinal chemistry, , May-26, Volume: 38, Issue:11, 1995
Improving the metabolic stability of antifungal compounds based on a scaffold hopping strategy: Design, synthesis, and structure-activity relationship studies of dihydrooxazole derivatives.European journal of medicinal chemistry, , Nov-15, Volume: 224, 2021
Design and optimization of highly-selective fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 24, Issue:15, 2014
Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4.The Journal of biological chemistry, , Mar-02, Volume: 282, Issue:9, 2007
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
[no title available],
Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles.European journal of medicinal chemistry, , Oct-01, Volume: 179, 2019
[no title available]Bioorganic & medicinal chemistry, , 05-15, Volume: 26, Issue:9, 2018
Comprehensive Synthesis of Amino Acid-Derived Thiazole Peptidomimetic Analogues to Understand the Enigmatic Drug/Substrate-Binding Site of P-Glycoprotein.Journal of medicinal chemistry, , 02-08, Volume: 61, Issue:3, 2018
Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity.Bioorganic & medicinal chemistry letters, , 06-01, Volume: 27, Issue:11, 2017
2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors: Influence of the alkylcarboxamide substitution of position 4.European journal of medicinal chemistry, , Jul-19, Volume: 117, 2016
2-(3-Methoxyphenyl)quinazoline Derivatives: A New Class of Direct Constitutive Androstane Receptor (CAR) Agonists.Journal of medicinal chemistry, , 05-26, Volume: 59, Issue:10, 2016
Design, synthesis, and evaluation of (2S,4R)-Ketoconazole sulfonamide analogs as potential treatments for Metabolic Syndrome.Bioorganic & medicinal chemistry letters, , 12-01, Volume: 26, Issue:23, 2016
Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation.European journal of medicinal chemistry, , Apr-13, Volume: 112, 2016
Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.Bioorganic & medicinal chemistry letters, , Jan-15, Volume: 25, Issue:2, 2015
Design, synthesis and biological evaluation of new hybrid anticonvulsants derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives.Bioorganic & medicinal chemistry, , May-15, Volume: 23, Issue:10, 2015
(2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands.European journal of medicinal chemistry, , Oct-20, Volume: 103, 2015
Design, synthesis, and anticonvulsant activity of new hybrid compounds derived from 2-(2,5-dioxopyrrolidin-1-yl)propanamides and 2-(2,5-dioxopyrrolidin-1-yl)butanamides.Journal of medicinal chemistry, , Jul-09, Volume: 58, Issue:13, 2015
Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).European journal of medicinal chemistry, , Oct-20, Volume: 103, 2015
4-Fluoro-3',4',5'-trimethoxychalcone as a new anti-invasive agent. From discovery to initial validation in an in vivo metastasis model.European journal of medicinal chemistry, , Aug-28, Volume: 101, 2015
Exploration of 3-Aminoazetidines as Triple Reuptake Inhibitors by Bioisosteric Modification of 3-α-Oxyazetidine.ACS medicinal chemistry letters, , Sep-11, Volume: 5, Issue:9, 2014
Investigation of a novel series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as human immunodeficiency virus type 1 integrase inhibitors.Journal of medicinal chemistry, , Jun-12, Volume: 57, Issue:11, 2014
Chemical synthesis, cytotoxicity, selectivity and bioavailability of 5α-androstane-3α,17β-diol derivatives.Bioorganic & medicinal chemistry, , Nov-01, Volume: 22, Issue:21, 2014
Discovery of a non-estrogenic irreversible inhibitor of 17β-hydroxysteroid dehydrogenase type 1 from 3-substituted-16β-(m-carbamoylbenzyl)-estradiol derivatives.Journal of medicinal chemistry, , Jan-09, Volume: 57, Issue:1, 2014
New drug-like hydroxyphenylnaphthol steroidomimetics as potent and selective 17β-hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of estrogen-dependent diseases.Journal of medicinal chemistry, , Jan-27, Volume: 54, Issue:2, 2011
Fine-tuning the selectivity of aldosterone synthase inhibitors: structure-activity and structure-selectivity insights from studies of heteroaryl substituted 1,2,5,6-tetrahydropyrrolo[3,2,1-ij]quinolin-4-one derivatives.Journal of medicinal chemistry, , Apr-14, Volume: 54, Issue:7, 2011
Cytochrome P450 3A4 inhibitory constituents of the wood of Taxus yunnanensis.Journal of natural products, , Jan-28, Volume: 74, Issue:1, 2011
Isopropylidene substitution increases activity and selectivity of biphenylmethylene 4-pyridine type CYP17 inhibitors.Journal of medicinal chemistry, , Jul-08, Volume: 53, Issue:13, 2010
Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery.Journal of medicinal chemistry, , May-27, Volume: 53, Issue:10, 2010
Potent and selective inhibition of human cytochrome P450 3A4 by seco-pancratistatin structural analogs.Bioorganic & medicinal chemistry letters, , Apr-01, Volume: 20, Issue:7, 2010
Rational modification of a candidate cancer drug for use against Chagas disease.Journal of medicinal chemistry, , Mar-26, Volume: 52, Issue:6, 2009
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Selective cytochrome P450 3A4 inhibitory activity of Amaryllidaceae alkaloids.Bioorganic & medicinal chemistry letters, , Jun-15, Volume: 19, Issue:12, 2009
A novel class of highly potent multidrug resistance reversal agents: disubstituted adamantyl derivatives.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 19, Issue:18, 2009
Structure-activity studies on seco-pancratistatin analogs: potent inhibitors of human cytochrome P450 3A4.Bioorganic & medicinal chemistry letters, , Oct-01, Volume: 19, Issue:19, 2009
Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Novel aldosterone synthase inhibitors with extended carbocyclic skeleton by a combined ligand-based and structure-based drug design approach.Journal of medicinal chemistry, , Oct-09, Volume: 51, Issue:19, 2008
Design, synthesis, and biological evaluation of (hydroxyphenyl)naphthalene and -quinoline derivatives: potent and selective nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) for the treatment of estrogen-dependent diseaseJournal of medicinal chemistry, , Apr-10, Volume: 51, Issue:7, 2008
Overcoming undesirable CYP1A2 inhibition of pyridylnaphthalene-type aldosterone synthase inhibitors: influence of heteroaryl derivatization on potency and selectivity.Journal of medicinal chemistry, , Aug-28, Volume: 51, Issue:16, 2008
In vivo active aldosterone synthase inhibitors with improved selectivity: lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-quinolin-2-one derivatives.Journal of medicinal chemistry, , Dec-25, Volume: 51, Issue:24, 2008
Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer.Journal of medicinal chemistry, , Aug-28, Volume: 51, Issue:16, 2008
Cytochrome P3A4 inhibitors and other constituents of Fibraurea tinctoria.Journal of natural products, , Volume: 70, Issue:12, 2007
Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4.The Journal of biological chemistry, , Mar-02, Volume: 282, Issue:9, 2007
Synthesis and evaluation of heteroaryl-substituted dihydronaphthalenes and indenes: potent and selective inhibitors of aldosterone synthase (CYP11B2) for the treatment of congestive heart failure and myocardial fibrosis.Journal of medicinal chemistry, , Apr-06, Volume: 49, Issue:7, 2006
Heteroaryl-substituted naphthalenes and structurally modified derivatives: selective inhibitors of CYP11B2 for the treatment of congestive heart failure and myocardial fibrosis.Journal of medicinal chemistry, , Oct-20, Volume: 48, Issue:21, 2005
Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities.Journal of natural products, , Volume: 67, Issue:7, 2004
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Fluorine substitution can block CYP3A4 metabolism-dependent inhibition: identification of (S)-N-[1-(4-fluoro-3- morpholin-4-ylphenyl)ethyl]-3- (4-fluorophenyl)acrylamide as an orally bioavailable KCNQ2 opener devoid of CYP3A4 metabolism-dependent inhibitiJournal of medicinal chemistry, , Aug-28, Volume: 46, Issue:18, 2003
Stereoisomers of ketoconazole: preparation and biological activity.Journal of medicinal chemistry, , Jul-24, Volume: 35, Issue:15, 1992
[no title available],
[no title available]Journal of medicinal chemistry, , 11-24, Volume: 65, Issue:22, 2022
Improving the metabolic stability of antifungal compounds based on a scaffold hopping strategy: Design, synthesis, and structure-activity relationship studies of dihydrooxazole derivatives.European journal of medicinal chemistry, , Nov-15, Volume: 224, 2021
Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 29, Issue:16, 2019
Investigation of multi-target-directed ligands (MTDLs) with butyrylcholinesterase (BuChE) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition: The design, synthesis of miconazole analogues targeting Alzheimer's disease.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
[no title available],
[no title available]European journal of medicinal chemistry, , Oct-05, Volume: 240, 2022
Expansion of the S-CN-DABO scaffold to exploit the impact on inhibitory activities against the non-nucleoside HIV-1 reverse transcriptase.European journal of medicinal chemistry, , Aug-05, Volume: 238, 2022
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Design and synthesis of a new fluorescent probe for cytochrome P450 3A4 (CYP 3A4).Bioorganic & medicinal chemistry letters, , Nov-03, Volume: 13, Issue:21, 2003
Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections.Journal of medicinal chemistry, , 04-25, Volume: 62, Issue:8, 2019
Aryl thiosemicarbazones for the treatment of trypanosomatidic infections.European journal of medicinal chemistry, , Feb-25, Volume: 146, 2018
Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds.European journal of medicinal chemistry, , Jan-27, Volume: 126, 2017
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
Discovery and extensive in vitro evaluations of NK-HDAC-1: a chiral histone deacetylase inhibitor as a promising lead.Journal of medicinal chemistry, , Apr-12, Volume: 55, Issue:7, 2012
The design, synthesis and structure-activity relationships of novel isoindoline-based histone deacetylase inhibitors.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 21, Issue:16, 2011
Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.Bioorganic & medicinal chemistry letters, , Jan-15, Volume: 17, Issue:2, 2007
Structure-activity relationships in 1,4-benzodioxan-related compounds. 9. From 1,4-benzodioxane to 1,4-dioxane ring as a promising template of novel alpha1D-adrenoreceptor antagonists, 5-HT1A full agonists, and cytotoxic agents.Journal of medicinal chemistry, , Oct-23, Volume: 51, Issue:20, 2008
Synthesis and biological evaluation of pyrrole-based chalcones as CYP1 enzyme inhibitors, for possible prevention of cancer and overcoming cisplatin resistance.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 27, Issue:16, 2017
[no title available]Bioorganic & medicinal chemistry letters, , 12-15, Volume: 27, Issue:24, 2017
Quinazoline derivatives as selective CYP1B1 inhibitors.European journal of medicinal chemistry, , Apr-21, Volume: 130, 2017
(E)-3-(3,4,5-Trimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one, a heterocyclic chalcone is a potent and selective CYP1A1 inhibitor and cancer chemopreventive agent.Bioorganic & medicinal chemistry letters, , 12-15, Volume: 27, Issue:24, 2017
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Discovery of N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine (GSK962040), the first small molecule motilin receptor agonist clinical candidate.Journal of medicinal chemistry, , Feb-26, Volume: 52, Issue:4, 2009
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Optimized experimental design for the estimation of enzyme kinetic parameters: an experimental evaluation.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 40, Issue:12, 2012
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.Current drug metabolism, , Volume: 6, Issue:5, 2005
[no title available],
Acetylene Group, Friend or Foe in Medicinal Chemistry.Journal of medicinal chemistry, , 06-11, Volume: 63, Issue:11, 2020
Discovery of a Potent Steroidal Glucocorticoid Receptor Antagonist with Enhanced Selectivity against the Progesterone and Androgen Receptors (OP-3633).Journal of medicinal chemistry, , 07-25, Volume: 62, Issue:14, 2019
Discovery of a Potent and Selective Steroidal Glucocorticoid Receptor Antagonist (ORIC-101).Journal of medicinal chemistry, , 09-13, Volume: 61, Issue:17, 2018
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.Current drug metabolism, , Volume: 6, Issue:5, 2005
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
Development and Characterization of Novel and Selective Inhibitors of Cytochrome P450 CYP26A1, the Human Liver Retinoic Acid Hydroxylase.Journal of medicinal chemistry, , Mar-24, Volume: 59, Issue:6, 2016
Design, synthesis, and biological evaluation of amide imidazole derivatives as novel metabolic enzyme CYP26A1 inhibitors.Bioorganic & medicinal chemistry, , Oct-15, Volume: 23, Issue:20, 2015
Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks.Journal of medicinal chemistry, , Jun-14, Volume: 55, Issue:11, 2012
Mechanism-based inactivation of cytochrome P450 3A4 by mibefradil through heme destruction.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 39, Issue:7, 2011
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
Exploration of 3-Aminoazetidines as Triple Reuptake Inhibitors by Bioisosteric Modification of 3-α-Oxyazetidine.ACS medicinal chemistry letters, , Sep-11, Volume: 5, Issue:9, 2014
Synthesis and biological evaluation of 3-phenethylazetidine derivatives as triple reuptake inhibitors.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 24, Issue:15, 2014
Novel, achiral aminoheterocycles as selective monoamine reuptake inhibitors.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 19, Issue:16, 2009
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
5-Lipoxygenase-activating protein inhibitors. Part 2: 3-{5-((S)-1-Acetyl-2,3-dihydro-1H-indol-2-ylmethoxy)-3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-1H-indol-2-yl}-2,2-dimethyl-propionic acid (AM679)--a potent FLAP inhibitor.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 20, Issue:1, 2010
5-lipoxygenase-activating protein inhibitors: development of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103).Journal of medicinal chemistry, , Oct-08, Volume: 52, Issue:19, 2009
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.Current drug metabolism, , Volume: 6, Issue:5, 2005
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
[no title available],
Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles.European journal of medicinal chemistry, , Oct-01, Volume: 179, 2019
Design and optimization of highly-selective fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 24, Issue:15, 2014
Human cytochrome P450 liability studies of trans-dihydronarciclasine: a readily available, potent, and selective cancer cell growth inhibitor.Journal of natural products, , Jan-28, Volume: 74, Issue:1, 2011
Selective cytochrome P450 3A4 inhibitory activity of Amaryllidaceae alkaloids.Bioorganic & medicinal chemistry letters, , Jun-15, Volume: 19, Issue:12, 2009
Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4'-fluoro and 4'-chloro analogues of amodiaquine. Identification of a suitable "back-up" compound for N-tert-butyl isoquine.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century.Journal of medicinal chemistry, , Mar-12, Volume: 52, Issue:5, 2009
Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2.Journal of medicinal chemistry, , 06-14, Volume: 61, Issue:11, 2018
Discovery of novel 1,2,3,4-tetrahydrobenzo[4, 5]thieno[2, 3-c]pyridine derivatives as potent and selective CYP17 inhibitors.European journal of medicinal chemistry, , May-26, Volume: 132, 2017
Highly potent and selective nonsteroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases.Journal of medicinal chemistry, , Aug-08, Volume: 56, Issue:15, 2013
Isopropylidene substitution increases activity and selectivity of biphenylmethylene 4-pyridine type CYP17 inhibitors.Journal of medicinal chemistry, , Jul-08, Volume: 53, Issue:13, 2010
Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer.Journal of medicinal chemistry, , Aug-28, Volume: 51, Issue:16, 2008
Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery.Journal of medicinal chemistry, , May-27, Volume: 53, Issue:10, 2010
Rational modification of a candidate cancer drug for use against Chagas disease.Journal of medicinal chemistry, , Mar-26, Volume: 52, Issue:6, 2009
Discovery and Biological Evaluation of Novel Dual EGFR/c-Met Inhibitors.ACS medicinal chemistry letters, , Apr-10, Volume: 5, Issue:4, 2014
Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks.Journal of medicinal chemistry, , Jun-14, Volume: 55, Issue:11, 2012
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.European journal of medicinal chemistry, , Volume: 44, Issue:7, 2009
Fluorine substitution can block CYP3A4 metabolism-dependent inhibition: identification of (S)-N-[1-(4-fluoro-3- morpholin-4-ylphenyl)ethyl]-3- (4-fluorophenyl)acrylamide as an orally bioavailable KCNQ2 opener devoid of CYP3A4 metabolism-dependent inhibitiJournal of medicinal chemistry, , Aug-28, Volume: 46, Issue:18, 2003
[no title available]Bioorganic & medicinal chemistry, , 03-15, Volume: 28, Issue:6, 2020
Structure-activity relationships of diamine inhibitors of cytochrome P450 (CYP) 3A as novel pharmacoenhancers, part I: core region.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 24, Issue:3, 2014
Pyridine-substituted desoxyritonavir is a more potent inhibitor of cytochrome P450 3A4 than ritonavir.Journal of medicinal chemistry, , May-09, Volume: 56, Issue:9, 2013
Synthesis and evaluation of inhibitors of cytochrome P450 3A (CYP3A) for pharmacokinetic enhancement of drugs.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 19, Issue:18, 2009
Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir.Antimicrobial agents and chemotherapy, , Volume: 52, Issue:5, 2008
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.Current drug metabolism, , Volume: 6, Issue:5, 2005
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Potent piperazine hydroxyethylamine HIV protease inhibitors containing novel P3 ligands.Bioorganic & medicinal chemistry letters, , Dec-15, Volume: 8, Issue:24, 1998
[no title available],
Isolation, Structural Identification, Synthesis, and Pharmacological Profiling of 1,2-Journal of medicinal chemistry, , 03-12, Volume: 63, Issue:5, 2020
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Incorporation of a chiral gem-disubstituted nitrogen heterocycle yields an oxazolidinone antibiotic with reduced mitochondrial toxicity.Bioorganic & medicinal chemistry letters, , 09-15, Volume: 29, Issue:18, 2019
Potent oxazolidinone antibacterials with heteroaromatic C-ring substructure.ACS medicinal chemistry letters, , Nov-14, Volume: 4, Issue:11, 2013
Antibacterial oxazolidinone analogues having a N-hydroxyacetyl-substituted seven-membered [1,2,5]triazepane or [1,2,5]oxadiazepane C-ring unit.European journal of medicinal chemistry, , Volume: 63, 2013
Biarylcarbamoylindolines are novel and selective 5-HT(2C) receptor inverse agonists: identification of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a potential antidepressant/anxiolytic agent.Journal of medicinal chemistry, , Mar-23, Volume: 43, Issue:6, 2000
6-Chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]- indoline (SB-242084): the first selective and brain penetrant 5-HT2C receptor antagonist.Journal of medicinal chemistry, , Oct-24, Volume: 40, Issue:22, 1997
[no title available]Journal of medicinal chemistry, , 03-10, Volume: 65, Issue:5, 2022
[no title available]Journal of medicinal chemistry, , 06-09, Volume: 65, Issue:11, 2022
Discovery of Novel Bicyclic Imidazolopyridine-Containing Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Improved Efficacy and Favorable Druggability.Journal of medicinal chemistry, , 03-10, Volume: 65, Issue:5, 2022
Structure-Based Discovery of Novel NHJournal of medicinal chemistry, , 06-23, Volume: 65, Issue:12, 2022
Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development.European journal of medicinal chemistry, , Mar-05, Volume: 231, 2022
[no title available]Journal of medicinal chemistry, , 12-22, Volume: 65, Issue:24, 2022
[no title available]Journal of medicinal chemistry, , 09-08, Volume: 65, Issue:17, 2022
4th generation nonsteroidal aromatase inhibitors: An iterative SAR-guided design, synthesis, and biological evaluation towards picomolar dual binding inhibitors.European journal of medicinal chemistry, , Oct-05, Volume: 240, 2022
Design, synthesis, and biological evaluation of a new series of pyrazole derivatives: Discovery of potent and selective JNK3 kinase inhibitors.Bioorganic & medicinal chemistry, , 09-01, Volume: 69, 2022
Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations.Journal of medicinal chemistry, , 01-13, Volume: 65, Issue:1, 2022
Identification of C5-NHJournal of medicinal chemistry, , 12-23, Volume: 64, Issue:24, 2021
Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with Potent Journal of medicinal chemistry, , 09-23, Volume: 64, Issue:18, 2021
Improving the metabolic stability of antifungal compounds based on a scaffold hopping strategy: Design, synthesis, and structure-activity relationship studies of dihydrooxazole derivatives.European journal of medicinal chemistry, , Nov-15, Volume: 224, 2021
[no title available]Journal of medicinal chemistry, , 10-14, Volume: 64, Issue:19, 2021
Discovery and development of novel pyrimidine and pyrazolo/thieno-fused pyrimidine derivatives as potent and orally active inducible nitric oxide synthase dimerization inhibitor with efficacy for arthritis.European journal of medicinal chemistry, , Mar-05, Volume: 213, 2021
Discovery of 1-Amino-1Journal of medicinal chemistry, , 11-11, Volume: 64, Issue:21, 2021
Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors.European journal of medicinal chemistry, , Nov-15, Volume: 224, 2021
[no title available]Journal of medicinal chemistry, , 11-11, Volume: 64, Issue:21, 2021
Synthesis, Characterization, and Preclinical Evaluation of a Small-Molecule Prostate-Specific Membrane Antigen-Targeted Monomethyl Auristatin E Conjugate.Journal of medicinal chemistry, , 12-09, Volume: 64, Issue:23, 2021
Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs.Journal of medicinal chemistry, , 07-22, Volume: 64, Issue:14, 2021
[no title available]Journal of medicinal chemistry, , 12-24, Volume: 63, Issue:24, 2020
Clobetasol Propionate Is a Heme-Mediated Selective Inhibitor of Human Cytochrome P450 3A5.Journal of medicinal chemistry, , 02-13, Volume: 63, Issue:3, 2020
[no title available]European journal of medicinal chemistry, , Jan-01, Volume: 185, 2020
Discovery of a Conformationally Constrained Oxazolidinone with Improved Safety and Efficacy Profiles for the Treatment of Multidrug-Resistant Tuberculosis.Journal of medicinal chemistry, , 09-10, Volume: 63, Issue:17, 2020
Substituted benzothiophene and benzofuran derivatives as a novel class of bone morphogenetic Protein-2 upregulators: Synthesis, anti-osteoporosis efficacies in ovariectomized rats and a zebrafish model, and ADME properties.European journal of medicinal chemistry, , Aug-15, Volume: 200, 2020
Nitrogen-Walk Approach to Explore Bioisosteric Replacements in a Series of Potent AJournal of medicinal chemistry, , 07-23, Volume: 63, Issue:14, 2020
Development of Robust 17(Journal of medicinal chemistry, , 11-27, Volume: 62, Issue:22, 2019
Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5.Journal of medicinal chemistry, , 02-14, Volume: 62, Issue:3, 2019
[no title available]European journal of medicinal chemistry, , May-15, Volume: 170, 2019
[no title available]Journal of medicinal chemistry, , 03-14, Volume: 62, Issue:5, 2019
Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research.Bioorganic & medicinal chemistry letters, , 08-15, Volume: 29, Issue:16, 2019
Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole Derivatives as Antiprotozoal Agents.Journal of medicinal chemistry, , 02-14, Volume: 62, Issue:3, 2019
Search for a 5-CT alternative. MedChemComm, , Nov-01, Volume: 9, Issue:11, 2018
Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties.MedChemComm, , Jun-01, Volume: 9, Issue:6, 2018
Novel non-sulfonamide 5-HTEuropean journal of medicinal chemistry, , Jan-20, Volume: 144, 2018
Design and synthesis of functionalized piperazin-1yl-(E)-stilbenes as inhibitors of 17α-hydroxylase-C17,20-lyase (Cyp17).Bioorganic & medicinal chemistry letters, , 07-15, Volume: 28, Issue:13, 2018
Discovery of 5-Cyano-6-phenylpyrimidin Derivatives Containing an Acylurea Moiety as Orally Bioavailable Reversal Agents against P-Glycoprotein-Mediated Mutidrug Resistance.Journal of medicinal chemistry, , Jul-26, Volume: 61, Issue:14, 2018
[no title available]Bioorganic & medicinal chemistry, , 05-15, Volume: 25, Issue:10, 2017
1-Benzyl-3-aryl-2-thiohydantoin Derivatives as New Anti-ACS medicinal chemistry letters, , Aug-10, Volume: 8, Issue:8, 2017
Design, synthesis, and evaluation of (2S,4R)-Ketoconazole sulfonamide analogs as potential treatments for Metabolic Syndrome.Bioorganic & medicinal chemistry letters, , 12-01, Volume: 26, Issue:23, 2016
Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer.Journal of medicinal chemistry, , Aug-28, Volume: 51, Issue:16, 2008
Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles.European journal of medicinal chemistry, , Oct-01, Volume: 179, 2019
Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 27, Issue:15, 2017
Design and optimization of highly-selective fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 24, Issue:15, 2014
Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery.Journal of medicinal chemistry, , May-27, Volume: 53, Issue:10, 2010
Rational modification of a candidate cancer drug for use against Chagas disease.Journal of medicinal chemistry, , Mar-26, Volume: 52, Issue:6, 2009
[no title available]European journal of medicinal chemistry, , Aug-05, Volume: 238, 2022
Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors.Journal of medicinal chemistry, , Dec-04, Volume: 46, Issue:25, 2003
Discovery of a N'-hydroxyphenylformamidine derivative HET0016 as a potent and selective 20-HETE synthase inhibitor.Bioorganic & medicinal chemistry letters, , Dec-03, Volume: 11, Issue:23, 2001
Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5.Journal of medicinal chemistry, , 02-14, Volume: 62, Issue:3, 2019
Exploration of the amine terminus in a novel series of 1,2,4-triazolo-3-yl-azabicyclo[3.1.0]hexanes as selective dopamine D3 receptor antagonists.Journal of medicinal chemistry, , Oct-14, Volume: 53, Issue:19, 2010
1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D(3) receptor antagonists.Journal of medicinal chemistry, , Jan-14, Volume: 53, Issue:1, 2010
The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor.ACS medicinal chemistry letters, , Oct-13, Volume: 2, Issue:10, 2011
p38 MAP kinase inhibitors. Part 6: 2-arylpyridazin-3-ones as templates for inhibitor design.Bioorganic & medicinal chemistry letters, , Nov-15, Volume: 16, Issue:22, 2006
Biarylcarbamoylindolines are novel and selective 5-HT(2C) receptor inverse agonists: identification of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a potential antidepressant/anxiolytic agent.Journal of medicinal chemistry, , Mar-23, Volume: 43, Issue:6, 2000
6-Chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]- indoline (SB-242084): the first selective and brain penetrant 5-HT2C receptor antagonist.Journal of medicinal chemistry, , Oct-24, Volume: 40, Issue:22, 1997
Development of Robust 17(Journal of medicinal chemistry, , 11-27, Volume: 62, Issue:22, 2019
[no title available]Bioorganic & medicinal chemistry letters, , 12-15, Volume: 27, Issue:24, 2017
Synthesis of VS-105: A novel and potent vitamin D receptor agonist with reduced hypercalcemic effects.Bioorganic & medicinal chemistry letters, , Nov-01, Volume: 23, Issue:21, 2013
Synthesis and biological activity of 2-(3'-hydroxypropylidene)-1α-hydroxy-19-norvitamin D analogues with shortened alkyl side chains.Journal of medicinal chemistry, , Oct-13, Volume: 54, Issue:19, 2011
Effects of 6-paradol, an unsaturated ketone from gingers, on cytochrome P450-mediated drug metabolism.Bioorganic & medicinal chemistry letters, , 04-15, Volume: 27, Issue:8, 2017
Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities.Journal of natural products, , Volume: 67, Issue:7, 2004
Entry inhibition of hepatitis B virus using cyclosporin O derivatives with peptoid side chain incorporation.Bioorganic & medicinal chemistry, , 08-15, Volume: 68, 2022
Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis.Journal of medicinal chemistry, , Mar-24, Volume: 59, Issue:6, 2016
Cyclosporine A- and tacrolimus-mediated inhibition of CYP3A4 and CYP3A5 in vitro.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 40, Issue:4, 2012
SCY-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of hepatitis C virus RNA replication in vitro.Antimicrobial agents and chemotherapy, , Volume: 54, Issue:2, 2010
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Optimization of a Series of Mu Opioid Receptor (MOR) Agonists with High G Protein Signaling Bias.Journal of medicinal chemistry, , 10-11, Volume: 61, Issue:19, 2018
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.Journal of medicinal chemistry, , Apr-24, Volume: 46, Issue:9, 2003
Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4.The Journal of biological chemistry, , Mar-02, Volume: 282, Issue:9, 2007
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.Current drug metabolism, , Volume: 6, Issue:5, 2005
Novel HIV-1 protease inhibitors active against multiple PI-resistant viral strains: coadministration with indinavir.Bioorganic & medicinal chemistry letters, , Nov-17, Volume: 13, Issue:22, 2003
Synthesis and activity of novel HIV protease inhibitors with improved potency against multiple PI-resistant viral strains.Bioorganic & medicinal chemistry letters, , Sep-02, Volume: 12, Issue:17, 2002
[no title available],
Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent.Bioorganic & medicinal chemistry letters, , 09-01, Volume: 71, 2022
3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel.Bioorganic & medicinal chemistry, , 04-01, Volume: 27, Issue:7, 2019
Structure-activity relationships for unit C pyridyl analogues of the tuberculosis drug bedaquiline.Bioorganic & medicinal chemistry, , 04-01, Volume: 27, Issue:7, 2019
Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units.Bioorganic & medicinal chemistry letters, , 12-01, Volume: 27, Issue:23, 2017
Expansion of the S-CN-DABO scaffold to exploit the impact on inhibitory activities against the non-nucleoside HIV-1 reverse transcriptase.European journal of medicinal chemistry, , Aug-05, Volume: 238, 2022
[no title available]European journal of medicinal chemistry, , Oct-05, Volume: 240, 2022
[no title available]Journal of medicinal chemistry, , 09-23, Volume: 64, Issue:18, 2021
Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs.Journal of medicinal chemistry, , 07-22, Volume: 64, Issue:14, 2021
[no title available]Journal of medicinal chemistry, , 05-14, Volume: 63, Issue:9, 2020
Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5.Journal of medicinal chemistry, , 02-14, Volume: 62, Issue:3, 2019
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Evaluation of basic, heterocyclic ring systems as templates for use as potassium competitive acid blockers (pCABs).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 19, Issue:23, 2009
Orally active C-6 heteroaryl- and heterocyclyl-substituted imidazo[1,2-a]pyridine acid pump antagonists (APAs).Bioorganic & medicinal chemistry letters, , Jul-01, Volume: 19, Issue:13, 2009
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β.Bioorganic & medicinal chemistry letters, , 02-15, Volume: 27, Issue:4, 2017
Structure-activity relationship and pharmacokinetic studies of sotrastaurin (AEB071), a promising novel medicine for prevention of graft rejection and treatment of psoriasis.Journal of medicinal chemistry, , Sep-08, Volume: 54, Issue:17, 2011
The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2.Bioorganic & medicinal chemistry letters, , Mar-24, Volume: 13, Issue:6, 2003
The discovery of SB-435495. A potent, orally active inhibitor of lipoprotein-associated phospholipase A(2) for evaluation in man.Bioorganic & medicinal chemistry letters, , Sep-16, Volume: 12, Issue:18, 2002
Discovery and preclinical evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic acid, (3S)-3-morpholinylmethyl ester (BMS-599626), a selective and orally efficacious inhibitor of human epiderJournal of medicinal chemistry, , Nov-12, Volume: 52, Issue:21, 2009
Identification of the oxidative and conjugative enzymes involved in the biotransformation of brivanib.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 40, Issue:1, 2012
Metabolism and disposition of [14C]brivanib alaninate after oral administration to rats, monkeys, and humans.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 39, Issue:5, 2011
Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth faJournal of medicinal chemistry, , Mar-27, Volume: 51, Issue:6, 2008
Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor.Journal of medicinal chemistry, , Apr-06, Volume: 49, Issue:7, 2006
Characterization of the in vitro and in vivo metabolism and disposition and cytochrome P450 inhibition/induction profile of saxagliptin in human.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 40, Issue:7, 2012
Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.Journal of medicinal chemistry, , Jul-28, Volume: 48, Issue:15, 2005
Amino-Heterocycle Tetrahydroisoquinoline CXCR4 Antagonists with Improved ADME Profiles via Late-Stage Buchwald Couplings.ACS medicinal chemistry letters, , Oct-14, Volume: 12, Issue:10, 2021
Discovery of ACS medicinal chemistry letters, , May-10, Volume: 9, Issue:5, 2018
Discovery of Novel Tricyclic Heterocycles as Potent and Selective DPP-4 Inhibitors for the Treatment of Type 2 Diabetes.ACS medicinal chemistry letters, , May-12, Volume: 7, Issue:5, 2016
Highly potent dipeptidyl peptidase IV inhibitors derived from Alogliptin through pharmacophore hybridization and lead optimization.European journal of medicinal chemistry, , Volume: 68, 2013
Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV.Journal of medicinal chemistry, , Jan-27, Volume: 54, Issue:2, 2011
Pyridyl-2,5-diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists: synthesis, pharmacokinetics, and in vivo potency.Journal of medicinal chemistry, , Jan-26, Volume: 55, Issue:2, 2012
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Biotransformations of 6',7'-dihydroxybergamottin and 6',7'-epoxybergamottin by the citrus-pathogenic fungi diminish cytochrome P450 3A4 inhibitory activity.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 22, Issue:6, 2012
Minor furanocoumarins and coumarins in grapefruit peel oil as inhibitors of human cytochrome P450 3A4.Journal of natural products, , Volume: 72, Issue:9, 2009
Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a Highly Selective Thyroid Hormone Receptor β agonist in clinical trials for the treatment of dysJournal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4'-fluoro and 4'-chloro analogues of amodiaquine. Identification of a suitable "back-up" compound for N-tert-butyl isoquine.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century.Journal of medicinal chemistry, , Mar-12, Volume: 52, Issue:5, 2009
Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt).Journal of medicinal chemistry, , Mar-11, Volume: 53, Issue:5, 2010
Identification of 4-(4-aminopiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidines as selective inhibitors of protein kinase B through fragment elaboration.Journal of medicinal chemistry, , Apr-10, Volume: 51, Issue:7, 2008
Heteroarylamide smoothened inhibitors: Discovery of N-[2,4-dimethyl-5-(1-methylimidazol-4-yl)phenyl]-4-(2-pyridylmethoxy)benzamide (AZD8542) and N-[5-(1H-imidazol-2-yl)-2,4-dimethyl-phenyl]-4-(2- pyridylmethoxy)benzamide (AZD7254).Bioorganic & medicinal chemistry, , 01-15, Volume: 28, Issue:2, 2020
Second generation 2-pyridyl biphenyl amide inhibitors of the hedgehog pathway.Bioorganic & medicinal chemistry letters, , Nov-15, Volume: 20, Issue:22, 2010
Discovery and Evaluation of Pyrazolo[3,4-ACS medicinal chemistry letters, , Oct-08, Volume: 11, Issue:10, 2020
Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase.Journal of medicinal chemistry, , 09-12, Volume: 62, Issue:17, 2019
Discovery of potent, highly selective covalent irreversible BTK inhibitors from a fragment hit.Bioorganic & medicinal chemistry letters, , 09-15, Volume: 28, Issue:17, 2018
Discovery of a novel series of pyridine and pyrimidine carboxamides as potent and selective covalent inhibitors of Btk.Bioorganic & medicinal chemistry letters, , 11-15, Volume: 28, Issue:21, 2018
Discovery of 3(S)-thiomethyl pyrrolidine ERK inhibitors for oncology.Bioorganic & medicinal chemistry letters, , 06-15, Volume: 28, Issue:11, 2018
[no title available]ACS medicinal chemistry letters, , Jul-12, Volume: 9, Issue:7, 2018
Discovery of novel highly potent hepatitis C virus NS5A inhibitor (AV4025).Journal of medicinal chemistry, , Sep-25, Volume: 57, Issue:18, 2014
Synthesis and evaluation of non-dimeric HCV NS5A inhibitors.Bioorganic & medicinal chemistry letters, , Apr-01, Volume: 23, Issue:7, 2013
Synthesis and evaluation of novel potent HCV NS5A inhibitors.Bioorganic & medicinal chemistry letters, , Jul-15, Volume: 22, Issue:14, 2012
The synthesis and SAR of calcitonin gene-related peptide (CGRP) receptor antagonists derived from tyrosine surrogates. Part 2.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 23, Issue:6, 2013
Discovery of (R)-4-(8-fluoro-2-oxo-1,2-dihydroquinazolin-3(4H)-yl)-N-(3-(7-methyl-1H-indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide (BMS-694153): a potent antagonist of the human calcitonin gene-related peptidJournal of medicinal chemistry, , Aug-28, Volume: 51, Issue:16, 2008
Discovery of MK-7246, a selective CRTH2 antagonist for the treatment of respiratory diseases.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 21, Issue:1, 2011
Azaindoles as potent CRTH2 receptor antagonists.Bioorganic & medicinal chemistry letters, , Jan-15, Volume: 21, Issue:2, 2011
New indole amide derivatives as potent CRTH2 receptor antagonists.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 21, Issue:11, 2011
Novel tricyclic antagonists of the prostaglandin D2 receptor DP2 with efficacy in a murine model of allergic rhinitis.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 19, Issue:16, 2009
Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor Journal of medicinal chemistry, , Jul-14, Volume: 54, Issue:13, 2011
Discovery and Characterization of AZD6738, a Potent Inhibitor of Ataxia Telangiectasia Mutated and Rad3 Related (ATR) Kinase with Application as an Anticancer Agent.Journal of medicinal chemistry, , 11-21, Volume: 61, Issue:22, 2018
Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity.Journal of medicinal chemistry, , Mar-14, Volume: 56, Issue:5, 2013
Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) Protein Inhibitor, I-BET282E, Suitable for Clinical Progression.Journal of medicinal chemistry, , 08-26, Volume: 64, Issue:16, 2021
Structure-based optimization of a series of selective BET inhibitors containing aniline or indoline groups.European journal of medicinal chemistry, , Apr-25, Volume: 150, 2018
Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains.Journal of medicinal chemistry, , Oct-10, Volume: 56, Issue:19, 2013
Identification of TUL01101: A Novel Potent and Selective JAK1 Inhibitor for the Treatment of Rheumatoid Arthritis.Journal of medicinal chemistry, , 12-22, Volume: 65, Issue:24, 2022
Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634.Journal of medicinal chemistry, , Nov-26, Volume: 57, Issue:22, 2014
An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins.European journal of medicinal chemistry, , Jan-15, Volume: 210, 2021
The Development Process for Discovery and Clinical Advancement of Modern Antimalarials.Journal of medicinal chemistry, , 12-12, Volume: 62, Issue:23, 2019
Imidazolopiperazines: lead optimization of the second-generation antimalarial agents.Journal of medicinal chemistry, , May-10, Volume: 55, Issue:9, 2012
Discovery of (5S,6S,9R)-5-amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): an oral calcitonin gene-related peptide (CGRP) antagonist in cJournal of medicinal chemistry, , Dec-13, Volume: 55, Issue:23, 2012
Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) Protein Inhibitor, I-BET282E, Suitable for Clinical Progression.Journal of medicinal chemistry, , 08-26, Volume: 64, Issue:16, 2021
Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A).Bioorganic & medicinal chemistry letters, , Apr-15, Volume: 22, Issue:8, 2012
From ApoA1 upregulation to BET family bromodomain inhibition: discovery of I-BET151.Bioorganic & medicinal chemistry letters, , Apr-15, Volume: 22, Issue:8, 2012
Discovery of (R)-6-cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis C virus polymerase inhibitor.Journal of medicinal chemistry, , Mar-12, Volume: 52, Issue:5, 2009
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Design and Discovery of an Orally Efficacious Spiroindolinone-Based Tankyrase Inhibitor for the Treatment of Colon Cancer.Journal of medicinal chemistry, , 04-23, Volume: 63, Issue:8, 2020
Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor.Journal of medicinal chemistry, , Apr-11, Volume: 56, Issue:7, 2013
Optimization of the choline transporter (CHT) inhibitor ML352: Development of VU6001221, an improved in vivo tool compound.Bioorganic & medicinal chemistry letters, , 10-01, Volume: 26, Issue:19, 2016
Synthesis and structure-activity relationships of a series of 4-methoxy-3-(piperidin-4-yl)oxy benzamides as novel inhibitors of the presynaptic choline transporter.Bioorganic & medicinal chemistry letters, , Apr-15, Volume: 25, Issue:8, 2015
Discovery of a novel 2,4-dimethylquinoline-6-carboxamide MBioorganic & medicinal chemistry letters, , 11-15, Volume: 27, Issue:22, 2017
Challenges in the development of an MBioorganic & medicinal chemistry letters, , 01-15, Volume: 27, Issue:2, 2017
Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 27, Issue:15, 2017
Design and optimization of highly-selective fungal CYP51 inhibitors.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 24, Issue:15, 2014
Characterization of human cytochrome P450s involved in the bioactivation of clozapine.Drug metabolism and disposition: the biological fate of chemicals, , Volume: 41, Issue:3, 2013
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 20, Issue:18, 2010
SAR of PXR transactivation in benzimidazole-based IGF-1R kinase inhibitors.Bioorganic & medicinal chemistry letters, , Mar-01, Volume: 20, Issue:5, 2010
Insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitors: SAR of a series of 3-[6-(4-substituted-piperazin-1-yl)-4-methyl-1H-benzimidazol-2-yl]-1H-pyridine-2-one.Bioorganic & medicinal chemistry letters, , May-15, Volume: 20, Issue:10, 2010
Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinasJournal of medicinal chemistry, , Oct-09, Volume: 51, Issue:19, 2008
Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors.Bioorganic & medicinal chemistry letters, , Jul-15, Volume: 18, Issue:14, 2008
Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity.Journal of medicinal chemistry, , Sep-08, Volume: 48, Issue:18, 2005
Identification, synthesis, and biological evaluation of 6-[(6R)-2-(4-fluorophenyl)-6-(hydroxymethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidin-3-yl]-2-(2-methylphenyl)pyridazin-3(2H)-one (AS1940477), a potent p38 MAP kinase inhibitor.Journal of medicinal chemistry, , Sep-13, Volume: 55, Issue:17, 2012
Enables
This protein enables 23 target(s):
Target | Category | Definition |
monooxygenase activity | molecular function | Catalysis of the incorporation of one atom from molecular oxygen into a compound and the reduction of the other atom of oxygen to water. [ISBN:0198506732] |
steroid binding | molecular function | Binding to a steroid, any of a large group of substances that have in common a ring system based on 1,2-cyclopentanoperhydrophenanthrene. [GOC:jl, ISBN:0198506732] |
iron ion binding | molecular function | Binding to an iron (Fe) ion. [GOC:ai] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
steroid hydroxylase activity | molecular function | Catalysis of the formation of a hydroxyl group on a steroid by incorporation of oxygen from O2. [ISBN:0721662544] |
retinoic acid 4-hydroxylase activity | molecular function | Catalysis of the conversion of retinoic acid to 4-hydroxy-retinoic acid. [PMID:19519282, PMID:9250660] |
oxidoreductase activity | molecular function | Catalysis of an oxidation-reduction (redox) reaction, a reversible chemical reaction in which the oxidation state of an atom or atoms within a molecule is altered. One substrate acts as a hydrogen or electron donor and becomes oxidized, while the other acts as hydrogen or electron acceptor and becomes reduced. [GOC:go_curators] |
oxygen binding | molecular function | Binding to oxygen (O2). [GOC:jl] |
enzyme binding | molecular function | Binding to an enzyme, a protein with catalytic activity. [GOC:jl] |
heme binding | molecular function | Binding to a heme, a compound composed of iron complexed in a porphyrin (tetrapyrrole) ring. [GOC:ai] |
vitamin D3 25-hydroxylase activity | molecular function | Catalysis of the reaction: vitamin D3 + NADPH + H+ + O2 = calcidiol + NADP+ + H2O. [ISBN:0471331309, MetaCyc:RXN-9829] |
caffeine oxidase activity | molecular function | Catalysis of the reaction: caffeine + O2 + 2 H+ + 2 e- = 1,3,7-trimethyluric acid + H2O. [RHEA:47148] |
quinine 3-monooxygenase activity | molecular function | Catalysis of the reaction: H+ + NADPH + O2 + quinine = 3-hydroxyquinine + H2O + NADP+. [EC:1.14.14.55, RHEA:20149] |
testosterone 6-beta-hydroxylase activity | molecular function | Catalysis of the reaction: testosterone + donor-H2 + O2 = 6-beta-hydroxytestosterone + H2O. [GOC:ai, PMID:11726664] |
1-alpha,25-dihydroxyvitamin D3 23-hydroxylase activity | molecular function | Catatlysis of the reaction: calcitriol + 2 H+ + O2 + 2 reduced [adrenodoxin] = 1alpha,23S,25-trihydroxycholecalciferol + H2O + 2 oxidized [adrenodoxin]. [PMID:22100522, PMID:30205156, RHEA:49192] |
anandamide 8,9 epoxidase activity | molecular function | Catalysis of the reaction: N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine + O2 + reduced [NADPH--hemoprotein reductase] = H+ + H2O + N-(8,9-epoxy-5Z,11Z,14Z-eicosatrienoyl)-ethanolamine + oxidized [NADPH--hemoprotein reductase]. [PMID:21289075, RHEA:53140] |
anandamide 11,12 epoxidase activity | molecular function | Catalysis of the reaction: N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine + O2 + reduced [NADPH--hemoprotein reductase] = H+ + H2O + N-(11,12-epoxy-5Z,8Z,14Z-eicosatrienoyl)-ethanolamine + oxidized [NADPH--hemoprotein reductase]. [PMID:21289075, RHEA:53144] |
anandamide 14,15 epoxidase activity | molecular function | Catalysis of the reaction: N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine + O2 + reduced [NADPH--hemoprotein reductase] = H+ + H2O + N-(14,15-epoxy-5Z,8Z,11Z-eicosatrienoyl)-ethanolamine + oxidized [NADPH--hemoprotein reductase]. [PMID:21289075, RHEA:53148] |
aromatase activity | molecular function | Catalysis of the reduction of an aliphatic ring to yield an aromatic ring. [GOC:cb] |
vitamin D 24-hydroxylase activity | molecular function | Catalysis of the hydroxylation of C-24 of any form of vitamin D. [GOC:BHF, GOC:mah, PMID:15546903] |
estrogen 16-alpha-hydroxylase activity | molecular function | Catalysis of the reaction: estrogen + donor-H2 + O2 = 16-alpha-hydroxyestrogen + H2O. [GOC:BHF] |
estrogen 2-hydroxylase activity | molecular function | Catalysis of the reaction: estrogen + donor-H2 + O2 = 2-hydroxyestrogen + H2O. [GOC:BHF, GOC:rl, PMID:14559847] |
1,8-cineole 2-exo-monooxygenase activity | molecular function | Catalysis of the reaction: 1,8-cineole + NADPH + H+ + O2 = 2-exo-hydroxy-1,8-cineole + NADP + H2O. [GOC:pz, RHEA:32895] |
Located In
This protein is located in 3 target(s):
Target | Category | Definition |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
endoplasmic reticulum membrane | cellular component | The lipid bilayer surrounding the endoplasmic reticulum. [GOC:mah] |
intracellular membrane-bounded organelle | cellular component | Organized structure of distinctive morphology and function, bounded by a single or double lipid bilayer membrane and occurring within the cell. Includes the nucleus, mitochondria, plastids, vacuoles, and vesicles. Excludes the plasma membrane. [GOC:go_curators] |
Involved In
This protein is involved in 19 target(s):
Target | Category | Definition |
lipid hydroxylation | biological process | The covalent attachment of a hydroxyl group to one or more fatty acids in a lipid. [GOC:hjd, PMID:15658937] |
lipid metabolic process | biological process | The chemical reactions and pathways involving lipids, compounds soluble in an organic solvent but not, or sparingly, in an aqueous solvent. Includes fatty acids; neutral fats, other fatty-acid esters, and soaps; long-chain (fatty) alcohols and waxes; sphingoids and other long-chain bases; glycolipids, phospholipids and sphingolipids; and carotenes, polyprenols, sterols, terpenes and other isoprenoids. [GOC:ma] |
steroid catabolic process | biological process | The chemical reactions and pathways resulting in the breakdown of steroids, compounds with a 1,2,cyclopentanoperhydrophenanthrene nucleus. [GOC:go_curators] |
xenobiotic metabolic process | biological process | The chemical reactions and pathways involving a xenobiotic compound, a compound foreign to the organim exposed to it. It may be synthesized by another organism (like ampicilin) or it can be a synthetic chemical. [GOC:cab2, GOC:krc] |
steroid metabolic process | biological process | The chemical reactions and pathways involving steroids, compounds with a 1,2,cyclopentanoperhydrophenanthrene nucleus. [ISBN:0198547684] |
cholesterol metabolic process | biological process | The chemical reactions and pathways involving cholesterol, cholest-5-en-3 beta-ol, the principal sterol of vertebrates and the precursor of many steroids, including bile acids and steroid hormones. It is a component of the plasma membrane lipid bilayer and of plasma lipoproteins and can be found in all animal tissues. [ISBN:0198506732] |
androgen metabolic process | biological process | The chemical reactions and pathways involving androgens, C19 steroid hormones that can stimulate the development of male sexual characteristics. [ISBN:0198506732] |
estrogen metabolic process | biological process | The chemical reactions and pathways involving estrogens, C18 steroid hormones that can stimulate the development of female sexual characteristics. Also found in plants. [ISBN:0198506732] |
alkaloid catabolic process | biological process | The chemical reactions and pathways resulting in the breakdown of alkaloids, nitrogen containing natural products not otherwise classified as peptides, nonprotein amino acids, amines, cyanogenic glycosides, glucosinolates, cofactors, phytohormones or primary metabolites (such as purine or pyrimidine bases). [GOC:lr, ISBN:0122146743] |
monoterpenoid metabolic process | biological process | The chemical reactions and pathways involving monoterpenoid compounds, terpenoids having a C10 skeleton. [ISBN:0198547684] |
calcitriol biosynthetic process from calciol | biological process | Conversion of vitamin D3 from its largely inactive form (calciol, also called cholecalciferol) into a hormonally active form (calcitriol). Conversion requires 25-hydroxylation of calciol in the liver to form calcidiol, and subsequent 1,alpha-hydroxylation of calcidiol in the kidney to form calcitriol. [GOC:BHF, GOC:rl, PMID:17426122, PMID:20511049] |
xenobiotic catabolic process | biological process | The chemical reactions and pathways resulting in the breakdown of a xenobiotic compound, a compound foreign to the organim exposed to it. It may be synthesized by another organism (like ampicilin) or it can be a synthetic chemical. [GOC:jl, GOC:krc] |
vitamin D metabolic process | biological process | The chemical reactions and pathways involving vitamin D, any of a group of related, fat-soluble compounds that are derived from delta-5,7 steroids and play a central role in calcium metabolism. Specific forms of vitamin D include calciferol (ergocalciferol; vitamin D2) and cholecalciferol (calciol; vitamin D3). [GOC:mah, ISBN:0471331309] |
vitamin D catabolic process | biological process | The chemical reactions and pathways resulting in the breakdown of vitamin D, any of a group of related, fat-soluble compounds that are derived from delta-5,7 steroids and play a central role in calcium metabolism. Specific forms of vitamin D include calciferol (ergocalciferol; vitamin D2) and cholecalciferol (calciol; vitamin D3). [GOC:mah, ISBN:0471331309] |
retinol metabolic process | biological process | The chemical reactions and pathways involving retinol, one of the three compounds that makes up vitamin A. [GOC:jl, http://www.indstate.edu/thcme/mwking/vitamins.html, PMID:1924551] |
retinoic acid metabolic process | biological process | The chemical reactions and pathways involving retinoic acid, one of the three components that makes up vitamin A. [GOC:jl, http://www.indstate.edu/thcme/mwking/vitamins.html] |
long-chain fatty acid biosynthetic process | biological process | The chemical reactions and pathways resulting in the formation of a long-chain fatty acid. A long-chain fatty acid has an aliphatic tail containing 13 to 22 carbons. [PMID:18390550] |
aflatoxin metabolic process | biological process | The chemical reactions and pathways involving aflatoxin, a fungal metabolite found as a contaminant in moldy grains that induces liver cancer. Aflatoxin induces a G to T transversion at codon 249 of p53, leading to its inactivation. Aflatoxin is converted to a chemical carcinogen by P450. [GOC:ai] |
oxidative demethylation | biological process | The process of removing one or more methyl groups from a molecule, involving the oxidation (i.e. electron loss) of one or more atoms in the substrate. [GOC:BHF, GOC:mah, GOC:rl] |