Page last updated: 2024-11-13

rg 1678

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

(4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl)(5-methanesulfonyl-2-(2,2,2-trifluoro-1-methylethoxy)phenyl)methanone: a GlyT1 inhibitor; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID24946690
CHEMBL ID1171829
SCHEMBL ID562490
MeSH IDM0547988

Synonyms (57)

Synonym
r-1678
bitopertin
rg-1678
paliflutine
ro-4917838
bdbm50322423
(s)-4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl]-[5-methanesulfonyl-2-(2,2,2-trifluoro-1-methylethoxy)phenyl]-methanone
CHEMBL1171829 ,
ro4917838
ro-4917939
845614-11-1
piperazine, 1-(3-fluoro-5-(trifluoromethyl)-2-pyridinyl)-4-(5-(methylsulfonyl)-2-((1s)-2,2,2-trifluoro-1-methylethoxy)benzoyl)-
r 1678
(4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl)(5-methylsulfonyl-2-(((s)-2,2,2-trifluoro-1-methylethyl)oxy)phenyl)methanone
methanone, (4-(3-fluoro-5-(trifluoromethyl)-2-pyridinyl)-1-piperazinyl)(5-(methylsulfonyl)-2-((1s)-2,2,2-trifluoro-1-methylethoxy)phenyl)-palmitoyl oligopeptide
q8l6an59yy ,
ro 4917939
rg 1678
ro 4917838
paliflutine [inn]
(4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl)(5-methanesulfonyl-2-(2,2,2-trifluoro-1-methylethoxy)phenyl)methanone
unii-q8l6an59yy
(s)-(4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl)(5-(methanesulfonyl)-2-(2,2,2-trifluoro-1-methylethoxy)phenyl)methanone
bitopertin [usan:inn]
D10186
bitopertin (jan/usan)
BCP9001046
HY-10809
CS-0939
S8219
SCHEMBL562490
[4-[3-fluoro-5-(trifluoromethyl)pyridin-2-yl]piperazin-1-yl]-[5-methylsulfonyl-2-[(2s)-1,1,1-trifluoropropan-2-yl]oxyphenyl]methanone
gtpl7546
rg1678
AKOS022185256
DTXSID80233556
[4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methylsulfonyl-2-[((s)-2,2,2-trifluoro-1-methylethyl)oxy]phenyl]methanone
AC-33092
(4-(3-fluoro-5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)(5-(methanesulfonyl)-2-(((2s)-1,1,1-trifluoropropan-2-yl)oxy)phenyl)methanone
bitopertin [who-dd]
methanone, (4-(3-fluoro-5-(trifluoromethyl)-2-pyridinyl)-1-piperazinyl)(5-(methylsulfonyl)-2-((1s)-2,2,2-trifluoro-1-methylethoxy)phenyl)-
bitopertin [inn]
disc-1459
bitopertin [usan]
bitopertin [jan]
methanone, [4-[3-fluoro-5-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl][5-(methylsulfonyl)-2-[(1s)-2
mfcd18251496
(s)-(4-(3-fluoro-5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)(5-(methylsulfonyl)-2-((1,1,1-trifluoropropan-2-yl)oxy)phenyl)methanone
NCGC00379029-01
DB12426
Q4918919
bitopertin (rg1678,ro-4917838)
AS-75194
1-[3-fluoro-5-(trifluoromethyl)pyridin-2-yl]-4-(5-methanesulfonyl-2-{[(2s)-1,1,1-trifluoropropan-2-yl]oxy}benzoyl)piperazine
HMS3886D08
CCG-269972
yuugyiuscynsqr-lbprgkrzsa-n

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Most of the adverse events were mild or moderate in their severity."( A double-blind randomized study assessing safety and efficacy following one-year adjunctive treatment with bitopertin, a glycine reuptake inhibitor, in Japanese patients with schizophrenia.
Funatogawa, T; Higuchi, T; Hirayasu, Y; Iida, S; Sato, S; Shuto, N; Takahashi, H; Yamada, T; Yoshida, S, 2016
)
0.43
"Altogether, bitopertin was found to be generally safe and well-tolerated for the treatment of patients with schizophrenia."( A double-blind randomized study assessing safety and efficacy following one-year adjunctive treatment with bitopertin, a glycine reuptake inhibitor, in Japanese patients with schizophrenia.
Funatogawa, T; Higuchi, T; Hirayasu, Y; Iida, S; Sato, S; Shuto, N; Takahashi, H; Yamada, T; Yoshida, S, 2016
)
0.43
" The principle adverse effect in the regulatory reproductive toxicity studies was peri-natal pup death when rat dams were treated during parturition at a dose resulting in five-times the human therapeutic exposure (AUC)."( Preclinical Reproductive and Developmental Toxicity Profile of a Glycine Transporter Type 1 (Glyt1) Inhibitor.
Alberati, D; Barrow, P; Koerner, A; Paehler, A; Parrott, N, 2016
)
0.43
" The incidence of serious adverse events was low across treatment groups in all three studies; psychiatric disorders were the most frequently reported serious adverse events and the most frequent cause of adverse events leading to discontinuation."( Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicent
Blaettler, T; Bugarski-Kirola, D; Garibaldi, G; Iwata, N; Kapur, S; Marques, TR; Millar, L; Reid, C; Sameljak, S, 2016
)
0.43

Pharmacokinetics

ExcerptReferenceRelevance
" This paper describes the use of physiologically based pharmacokinetic (PBPK) modelling and preclinical data to gain insights into and predict bitopertin clinical pharmacokinetics."( Physiologically based pharmacokinetic modelling to predict single- and multiple-dose human pharmacokinetics of bitopertin.
Alberati, D; Boutouyrie, B; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Robson, R, 2013
)
0.39
" This model supports further clinical development and provides a valuable repository for pharmacokinetic knowledge gained about the molecule."( Physiologically based pharmacokinetic modelling to predict single- and multiple-dose human pharmacokinetics of bitopertin.
Alberati, D; Boutouyrie, B; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Robson, R, 2013
)
0.39
" Physiologically based pharmacokinetic (PBPK) absorption model simulations of the impact of changes in particle size and dosage form (either capsules, tablets, or an aqueous suspension) on oral pharmacokinetics was verified by comparison to measured plasma concentrations."( Physiologically based absorption modelling to predict the impact of drug properties on pharmacokinetics of bitopertin.
Boetsch, C; Guerini, E; Hainzl, D; Krimmer, S; Martin-Facklam, M; Parrott, N; Scheubel, E, 2014
)
0.4
"To assess the effect of strong and moderate cytochrome P450 (CYP) 3A4 inhibition on exposure of bitopertin, a glycine reuptake inhibitor primarily metabolized by CYP3A4, and to compare the results with predictions based on physiologically based pharmacokinetic (PBPK) modelling."( Effects of Cytochrome P450 3A4 Inhibitors-Ketoconazole and Erythromycin-on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions.
Banken, L; Boetsch, C; Fowler, S; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Poirier, A, 2016
)
0.43
" Pharmacokinetic parameters were derived by non-compartmental methods."( Effects of Cytochrome P450 3A4 Inhibitors-Ketoconazole and Erythromycin-on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions.
Banken, L; Boetsch, C; Fowler, S; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Poirier, A, 2016
)
0.43
" The peak concentration (C max) increased by <25 % in both studies."( Effects of Cytochrome P450 3A4 Inhibitors-Ketoconazole and Erythromycin-on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions.
Banken, L; Boetsch, C; Fowler, S; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Poirier, A, 2016
)
0.43
"We propose a strategy for studying ethnopharmacology by conducting sequential physiologically based pharmacokinetic (PBPK) prediction (a 'bottom-up' approach) and population pharmacokinetic (popPK) confirmation (a 'top-down' approach), or in reverse order, depending on whether the purpose is ethnic effect assessment for a new molecular entity under development or a tool for ethnic sensitivity prediction for a given pathway."( Combining 'Bottom-Up' and 'Top-Down' Methods to Assess Ethnic Difference in Clearance: Bitopertin as an Example.
Feng, S; Hu, P; Martin-Facklam, M; Parrott, N; Peck, R; Saito, T; Shi, J; Weber, C, 2016
)
0.43
"A PBPK model was built using Simcyp(®) to simulate the pharmacokinetics of bitopertin and to predict the ethnic sensitivity in clearance, given pharmacokinetic data in just one ethnicity."( Combining 'Bottom-Up' and 'Top-Down' Methods to Assess Ethnic Difference in Clearance: Bitopertin as an Example.
Feng, S; Hu, P; Martin-Facklam, M; Parrott, N; Peck, R; Saito, T; Shi, J; Weber, C, 2016
)
0.43

Bioavailability

ExcerptReferenceRelevance
" Simulated changes in oral pharmacokinetics caused by differences in particle size and dosage form were confirmed in two separate relative bioavailability studies."( Physiologically based absorption modelling to predict the impact of drug properties on pharmacokinetics of bitopertin.
Boetsch, C; Guerini, E; Hainzl, D; Krimmer, S; Martin-Facklam, M; Parrott, N; Scheubel, E, 2014
)
0.4
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
"Multiple dosing with bitopertin 30 mg or 175 mg did not affect QTcF in these healthy male volunteers."( Evaluation of the effects of bitopertin (RG1678) on cardiac repolarization: a thorough corrected QT study in healthy male volunteers.
Banken, L; Hahn, M; Hofmann, C; Martin-Facklam, M; Nagel, S; Swearingen, D, 2012
)
0.38
" Comparison of pharmacokinetics predicted by PBPK modelling with those measured after intravenous and oral dosing in rats and monkeys showed a good match and thus increased confidence that a similar approach could be applied for human prediction."( Physiologically based pharmacokinetic modelling to predict single- and multiple-dose human pharmacokinetics of bitopertin.
Alberati, D; Boutouyrie, B; Hainzl, D; Hofmann, C; Martin-Facklam, M; Parrott, N; Robson, R, 2013
)
0.39
" Its clinical oral pharmacokinetics is sensitive to changes in drug substance particle size and dosage form."( Physiologically based absorption modelling to predict the impact of drug properties on pharmacokinetics of bitopertin.
Boetsch, C; Guerini, E; Hainzl, D; Krimmer, S; Martin-Facklam, M; Parrott, N; Scheubel, E, 2014
)
0.4
" Cessation of dosing two days before parturition prevented the pup deaths."( Preclinical Reproductive and Developmental Toxicity Profile of a Glycine Transporter Type 1 (Glyt1) Inhibitor.
Alberati, D; Barrow, P; Koerner, A; Paehler, A; Parrott, N, 2016
)
0.43
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (10)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency37.90830.01237.983543.2770AID1645841
GVesicular stomatitis virusPotency6.74120.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency21.31740.00108.379861.1304AID1645840
Interferon betaHomo sapiens (human)Potency6.74120.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency6.74120.01238.964839.8107AID1645842
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency6.74120.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency6.74120.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Cytochrome P450 3A4Homo sapiens (human)Ki0.04700.00011.41629.9000AID1356787
Sodium- and chloride-dependent glycine transporter 1Homo sapiens (human)Ki0.04700.04700.04700.0470AID1356787
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Sodium- and chloride-dependent glycine transporter 1Rattus norvegicus (Norway rat)Occ501.80001.80001.80001.8000AID1663643
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (74)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lipid hydroxylationCytochrome P450 3A4Homo sapiens (human)
lipid metabolic processCytochrome P450 3A4Homo sapiens (human)
steroid catabolic processCytochrome P450 3A4Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 3A4Homo sapiens (human)
steroid metabolic processCytochrome P450 3A4Homo sapiens (human)
cholesterol metabolic processCytochrome P450 3A4Homo sapiens (human)
androgen metabolic processCytochrome P450 3A4Homo sapiens (human)
estrogen metabolic processCytochrome P450 3A4Homo sapiens (human)
alkaloid catabolic processCytochrome P450 3A4Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 3A4Homo sapiens (human)
calcitriol biosynthetic process from calciolCytochrome P450 3A4Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 3A4Homo sapiens (human)
vitamin D metabolic processCytochrome P450 3A4Homo sapiens (human)
vitamin D catabolic processCytochrome P450 3A4Homo sapiens (human)
retinol metabolic processCytochrome P450 3A4Homo sapiens (human)
retinoic acid metabolic processCytochrome P450 3A4Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 3A4Homo sapiens (human)
aflatoxin metabolic processCytochrome P450 3A4Homo sapiens (human)
oxidative demethylationCytochrome P450 3A4Homo sapiens (human)
negative regulation of NMDA glutamate receptor activitySodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
neurotransmitter transportSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
glycine transportSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
positive regulation of hemoglobin biosynthetic processSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
regulation of synaptic transmission, glycinergicSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
positive regulation of heme biosynthetic processSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
transport across blood-brain barrierSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
glycine import across plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
sodium ion transmembrane transportSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
synaptic transmission, glycinergicSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (42)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
steroid bindingCytochrome P450 3A4Homo sapiens (human)
iron ion bindingCytochrome P450 3A4Homo sapiens (human)
protein bindingCytochrome P450 3A4Homo sapiens (human)
steroid hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
retinoic acid 4-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
oxidoreductase activityCytochrome P450 3A4Homo sapiens (human)
oxygen bindingCytochrome P450 3A4Homo sapiens (human)
enzyme bindingCytochrome P450 3A4Homo sapiens (human)
heme bindingCytochrome P450 3A4Homo sapiens (human)
vitamin D3 25-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
caffeine oxidase activityCytochrome P450 3A4Homo sapiens (human)
quinine 3-monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
testosterone 6-beta-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
1-alpha,25-dihydroxyvitamin D3 23-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 8,9 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 11,12 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 14,15 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
aromatase activityCytochrome P450 3A4Homo sapiens (human)
vitamin D 24-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
estrogen 16-alpha-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
estrogen 2-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
1,8-cineole 2-exo-monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
glycine transmembrane transporter activitySodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
glycine:sodium symporter activitySodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (36)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cytoplasmCytochrome P450 3A4Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 3A4Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 3A4Homo sapiens (human)
endosomeSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
basal plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
postsynaptic densitySodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
basolateral plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
apical plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
lateral plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
synaptic vesicle membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
dense core granuleSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
presynaptic membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
postsynaptic membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
hippocampal mossy fiber to CA3 synapseSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
parallel fiber to Purkinje cell synapseSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
plasma membraneSodium- and chloride-dependent glycine transporter 1Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1751528Pro-social effect in po dosed BALB/c mouse assessed as sniffing index at 5 mg/kg, po measured after 60 mins by social interaction2021Journal of medicinal chemistry, 08-12, Volume: 64, Issue:15
Discovery of TAK-041: a Potent and Selective GPR139 Agonist Explored for the Treatment of Negative Symptoms Associated with Schizophrenia.
AID1356799Inhibition of GlyT1c (unknown origin) expressed in Xenopus laevis oocytes clamped at -60 mV assessed as reduction in 10 uM glycine-induced membrane currents at 300 nM pre-treated with glycine for 1 min followed by compound dosing for 3 mins by two-electro2018Journal of medicinal chemistry, 09-13, Volume: 61, Issue:17
Discovery of Novel Aminotetralines and Aminochromanes as Selective and Competitive Glycine Transporter 1 (GlyT1) Inhibitors.
AID1663643In vivo receptor occupancy at GlyT1 in Sprague-Dawley rat measured after 60 mins2020Bioorganic & medicinal chemistry letters, 07-15, Volume: 30, Issue:14
Azetidine-based selective glycine transporter-1 (GlyT1) inhibitors with memory enhancing properties.
AID1356787Displacement of [3H]N-Methyl-SSR504734 from human GlyT1c expressed in cell membranes incubated for 1 hr by liquid scintillation spectrometry2018Journal of medicinal chemistry, 09-13, Volume: 61, Issue:17
Discovery of Novel Aminotetralines and Aminochromanes as Selective and Competitive Glycine Transporter 1 (GlyT1) Inhibitors.
AID1356801Non-competitive inhibition of GlyT1c (unknown origin) expressed in Xenopus laevis oocytes clamped at -60 mV assessed as reduction in glycine-induced membrane currents at 300 nM pre-treated with glycine for 1 min followed by compound dosing for 3 mins by t2018Journal of medicinal chemistry, 09-13, Volume: 61, Issue:17
Discovery of Novel Aminotetralines and Aminochromanes as Selective and Competitive Glycine Transporter 1 (GlyT1) Inhibitors.
AID1356800Inhibition of GlyT1c (unknown origin) expressed in Xenopus laevis oocytes clamped at -60 mV assessed as reduction in 3000 uM glycine-induced membrane currents at 300 nM pre-treated with glycine for 1 min followed by compound dosing for 3 mins by two-elect2018Journal of medicinal chemistry, 09-13, Volume: 61, Issue:17
Discovery of Novel Aminotetralines and Aminochromanes as Selective and Competitive Glycine Transporter 1 (GlyT1) Inhibitors.
AID1347001Human GlyT2 (Glycine transporter subfamily)2010Journal of medicinal chemistry, Jun-24, Volume: 53, Issue:12
Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia.
AID1346976Human GlyT1 (Glycine transporter subfamily)2010Journal of medicinal chemistry, Jun-24, Volume: 53, Issue:12
Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (43)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's35 (81.40)24.3611
2020's8 (18.60)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 17.94

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index17.94 (24.57)
Research Supply Index4.08 (2.92)
Research Growth Index6.83 (4.65)
Search Engine Demand Index10.37 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (17.94)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials14 (31.82%)5.53%
Reviews2 (4.55%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other28 (63.64%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]