Page last updated: 2024-12-05

2,2-dimethylbutyric acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

2,2-dimethylbutyric acid: structure given in first source; plasma metabolite of simvastatin [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

2,2-dimethylbutyric acid : A branched-chain fatty acid and metabolite of the lactone prodrug simvastatin, whose sodium salt is potentially useful for the treatment of thalassaemias and haemoglobinopathies. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID11684
CHEMBL ID286013
CHEBI ID38649
SCHEMBL ID47533
MeSH IDM0201541

Synonyms (59)

Synonym
ec 209-865-0
nsc 16045
ay606cn05o ,
einecs 209-865-0
unii-ay606cn05o
MLS002174247
smr001261422
butanoic acid, 2,2-dimethyl-
butyric acid, 2,2-dimethyl-
alpha,alpha-dimethylbutanoic acid
CHEBI:38649 ,
alpha,alpha-dimethylbutyric acid
.alpha.,.alpha.-dimethylbutyric acid
2,2-dimethylbutanoic acid
butanoic acid,2-dimethyl-
nsc-16045
neohexanoic acid
2,2-dimethylbutyric acid
.alpha.,.alpha.-dimethylbutanoic acid
nsc16045
595-37-9
NCGC00090948-01
2,2-dimethyl butanoic acid
inchi=1/c6h12o2/c1-4-6(2,3)5(7)8/h4h2,1-3h3,(h,7,8
2,2-dimethylbutyric acid, 96%
LMFA01020078
2,2-dimethyl-butanoic acid
dimethyl ethyl acetic acid
CHEMBL286013
dimebutic acid
nsc-741804
2,2-dimethyl-butyric acid
FT-0653122
D2429
NCGC00090948-02
AKOS009158866
EN300-64847
HMS3039B09
cas-595-37-9
dtxsid0032811 ,
dtxcid8012811
tox21_200740
NCGC00258294-01
FT-0609269
dimebutic acid [inn]
SCHEMBL47533
W-105316
2,2-dimethylbutyrate
1219804-04-2
2,2-dimethylbutyric-d11 acid
mfcd00004200
CS-W016597
DS-14471
Q27117928
2.2-dimethylbutyric acid
2,2-dimethylbutanoicacid-d6
2,2-dimethylbutanoicacid
bdbm50566497
Z995036360

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Healthy adult human subjects were treated with a novel short chain fatty acids (SCFA) derivative, sodium 2,2 dimethylbutyrate (SDMB), or placebo, with 1 of 4 single dose levels (2, 5, 10, and 20 mg/kg) or daily doses (5, 10, or 15 mg/kg) over 14 days, and monitored for adverse clinical and laboratory events, drug levels, reticulocytes, and HbF assays."( Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers.
Berenson, RJ; Boosalis, MS; Case, S; Faller, DV; Keefer, JR; Perrine, SP; Wallis, WJ; Wargin, WA; Welch, WC, 2011
)
0.37
" In conclusion, the no-observed adverse effect level for FOB and general toxicity was 200 mg/kg following gavage administration of ST-20 for up to 15 consecutive days."( Short-term toxicity study of ST-20 (NSC-741804) by oral gavage in Sprague-Dawley rats.
Contos, DA; Hawk, MA; Johnson, JD; Peggins, JO; Perrine, SP; Ritchie, GD; Ryan, MJ; Terse, PS; Tomaszewski, JE; Vasconcelos, DY, 2011
)
0.37
" The most common adverse events in the HQK-1001 group, usually graded as mild or moderate, consisted of nausea, headache, vomiting, abdominal pain, and fatigue."( A double-blind, placebo-controlled phase II study of the efficacy and safety of 2,2-dimethylbutyrate (HQK-1001), an oral fetal globin inducer, in sickle cell disease.
Abboud, MR; El Beshlawy, A; Ghalie, RG; Haynes, J; Inati, A; Kutlar, A; Manwani, D; Reid, ME; Sharon, B; Smith, W; Taher, AT; Ward, R, 2014
)
0.4

Pharmacokinetics

ExcerptReferenceRelevance
" The terminal half-life ranged from 9 to 15 hours."( Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers.
Berenson, RJ; Boosalis, MS; Case, S; Faller, DV; Keefer, JR; Perrine, SP; Wallis, WJ; Wargin, WA; Welch, WC, 2011
)
0.37

Bioavailability

ExcerptReferenceRelevance
" Sodium 2,2 dimethylbutyrate (HQK-1001), an orally bioavailable short-chain fatty acid derivative, induces γ-globin expression experimentally and is well-tolerated in normal subjects."( A randomized phase I/II trial of HQK-1001, an oral fetal globin gene inducer, in β-thalassaemia intermedia and HbE/β-thalassaemia.
Berenson, R; Boosalis, M; Chaneim, N; Fucharoen, S; Inati, A; Koussa, S; Perrine, SP; Siritanaratku, N; Taher, A; Thein, SL; Wargin, WC, 2013
)
0.39

Dosage Studied

ExcerptRelevanceReference
" A fetal globin-inducing therapeutic with convenient oral dosing would be an advance for these classic molecular diseases."( Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers.
Berenson, RJ; Boosalis, MS; Case, S; Faller, DV; Keefer, JR; Perrine, SP; Wallis, WJ; Wargin, WA; Welch, WC, 2011
)
0.37
" Further investigation of HQK-1001 with longer dosing to definitively evaluate its haematological potential appears warranted."( A randomized phase I/II trial of HQK-1001, an oral fetal globin gene inducer, in β-thalassaemia intermedia and HbE/β-thalassaemia.
Berenson, R; Boosalis, M; Chaneim, N; Fucharoen, S; Inati, A; Koussa, S; Perrine, SP; Siritanaratku, N; Taher, A; Thein, SL; Wargin, WC, 2013
)
0.39
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
metaboliteAny intermediate or product resulting from metabolism. The term 'metabolite' subsumes the classes commonly known as primary and secondary metabolites.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (1)

ClassDescription
dimethylbutyric acidAny compound comprising a butyric acid skeleton carrying two methyl components.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (16)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
chaperonin-containing TCP-1 beta subunit homologHomo sapiens (human)Potency50.11873.981127.764939.8107AID504842
GLI family zinc finger 3Homo sapiens (human)Potency60.32330.000714.592883.7951AID1259369
chromobox protein homolog 1Homo sapiens (human)Potency89.12510.006026.168889.1251AID540317
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency12.58930.01789.637444.6684AID588834
gemininHomo sapiens (human)Potency0.14900.004611.374133.4983AID624296; AID624297
Nuclear receptor ROR-gammaHomo sapiens (human)Potency3.75780.026622.448266.8242AID651802
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Cytochrome P450 1A2Homo sapiens (human)IC50 (µMol)10,000.00000.00011.774010.0000AID1750639; AID1750649
Cytochrome P450 3A4Homo sapiens (human)IC50 (µMol)10,000.00000.00011.753610.0000AID1750645; AID1750646; AID1750647; AID1750655; AID1750656; AID1750657; AID1750658
Cytochrome P450 2C8Homo sapiens (human)IC50 (µMol)10,000.00000.00081.88487.9000AID1750651
Cytochrome P450 2D6Homo sapiens (human)IC50 (µMol)10,000.00000.00002.015110.0000AID1750644; AID1750654
Cytochrome P450 2C9 Homo sapiens (human)IC50 (µMol)10,000.00000.00002.800510.0000AID1750642; AID1750652
Cytochrome P450 2B6Homo sapiens (human)IC50 (µMol)10,000.00000.00113.418610.0000AID1750640; AID1750650
Cytochrome P450 3A5Homo sapiens (human)IC50 (µMol)10,000.00000.00330.70736.2000AID1750648
Cytochrome P450 2C19Homo sapiens (human)IC50 (µMol)10,000.00000.00002.398310.0000AID1750643; AID1750653
Solute carrier family 22 member 6Homo sapiens (human)IC50 (µMol)3,862.00000.27004.53069.9000AID1750663
Solute carrier family 22 member 8Homo sapiens (human)IC50 (µMol)3,511.00004.93007.39009.9200AID1750664
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (70)

Processvia Protein(s)Taxonomy
steroid catabolic processCytochrome P450 1A2Homo sapiens (human)
porphyrin-containing compound metabolic processCytochrome P450 1A2Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 1A2Homo sapiens (human)
cholesterol metabolic processCytochrome P450 1A2Homo sapiens (human)
estrogen metabolic processCytochrome P450 1A2Homo sapiens (human)
toxin biosynthetic processCytochrome P450 1A2Homo sapiens (human)
post-embryonic developmentCytochrome P450 1A2Homo sapiens (human)
alkaloid metabolic processCytochrome P450 1A2Homo sapiens (human)
regulation of gene expressionCytochrome P450 1A2Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 1A2Homo sapiens (human)
dibenzo-p-dioxin metabolic processCytochrome P450 1A2Homo sapiens (human)
epoxygenase P450 pathwayCytochrome P450 1A2Homo sapiens (human)
lung developmentCytochrome P450 1A2Homo sapiens (human)
methylationCytochrome P450 1A2Homo sapiens (human)
monocarboxylic acid metabolic processCytochrome P450 1A2Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 1A2Homo sapiens (human)
retinol metabolic processCytochrome P450 1A2Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 1A2Homo sapiens (human)
cellular respirationCytochrome P450 1A2Homo sapiens (human)
aflatoxin metabolic processCytochrome P450 1A2Homo sapiens (human)
hydrogen peroxide biosynthetic processCytochrome P450 1A2Homo sapiens (human)
oxidative demethylationCytochrome P450 1A2Homo sapiens (human)
cellular response to cadmium ionCytochrome P450 1A2Homo sapiens (human)
omega-hydroxylase P450 pathwayCytochrome P450 1A2Homo sapiens (human)
lipid hydroxylationCytochrome P450 3A4Homo sapiens (human)
lipid metabolic processCytochrome P450 3A4Homo sapiens (human)
steroid catabolic processCytochrome P450 3A4Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 3A4Homo sapiens (human)
steroid metabolic processCytochrome P450 3A4Homo sapiens (human)
cholesterol metabolic processCytochrome P450 3A4Homo sapiens (human)
androgen metabolic processCytochrome P450 3A4Homo sapiens (human)
estrogen metabolic processCytochrome P450 3A4Homo sapiens (human)
alkaloid catabolic processCytochrome P450 3A4Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 3A4Homo sapiens (human)
calcitriol biosynthetic process from calciolCytochrome P450 3A4Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 3A4Homo sapiens (human)
vitamin D metabolic processCytochrome P450 3A4Homo sapiens (human)
vitamin D catabolic processCytochrome P450 3A4Homo sapiens (human)
retinol metabolic processCytochrome P450 3A4Homo sapiens (human)
retinoic acid metabolic processCytochrome P450 3A4Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 3A4Homo sapiens (human)
aflatoxin metabolic processCytochrome P450 3A4Homo sapiens (human)
oxidative demethylationCytochrome P450 3A4Homo sapiens (human)
lipid hydroxylationCytochrome P450 2C8Homo sapiens (human)
organic acid metabolic processCytochrome P450 2C8Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 2C8Homo sapiens (human)
steroid metabolic processCytochrome P450 2C8Homo sapiens (human)
estrogen metabolic processCytochrome P450 2C8Homo sapiens (human)
epoxygenase P450 pathwayCytochrome P450 2C8Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 2C8Homo sapiens (human)
retinol metabolic processCytochrome P450 2C8Homo sapiens (human)
retinoic acid metabolic processCytochrome P450 2C8Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 2C8Homo sapiens (human)
icosanoid biosynthetic processCytochrome P450 2C8Homo sapiens (human)
oxidative demethylationCytochrome P450 2C8Homo sapiens (human)
omega-hydroxylase P450 pathwayCytochrome P450 2C8Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 2D6Homo sapiens (human)
steroid metabolic processCytochrome P450 2D6Homo sapiens (human)
cholesterol metabolic processCytochrome P450 2D6Homo sapiens (human)
estrogen metabolic processCytochrome P450 2D6Homo sapiens (human)
coumarin metabolic processCytochrome P450 2D6Homo sapiens (human)
alkaloid metabolic processCytochrome P450 2D6Homo sapiens (human)
alkaloid catabolic processCytochrome P450 2D6Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 2D6Homo sapiens (human)
isoquinoline alkaloid metabolic processCytochrome P450 2D6Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 2D6Homo sapiens (human)
retinol metabolic processCytochrome P450 2D6Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 2D6Homo sapiens (human)
negative regulation of bindingCytochrome P450 2D6Homo sapiens (human)
oxidative demethylationCytochrome P450 2D6Homo sapiens (human)
negative regulation of cellular organofluorine metabolic processCytochrome P450 2D6Homo sapiens (human)
arachidonic acid metabolic processCytochrome P450 2D6Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 2C9 Homo sapiens (human)
steroid metabolic processCytochrome P450 2C9 Homo sapiens (human)
cholesterol metabolic processCytochrome P450 2C9 Homo sapiens (human)
estrogen metabolic processCytochrome P450 2C9 Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 2C9 Homo sapiens (human)
epoxygenase P450 pathwayCytochrome P450 2C9 Homo sapiens (human)
urea metabolic processCytochrome P450 2C9 Homo sapiens (human)
monocarboxylic acid metabolic processCytochrome P450 2C9 Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 2C9 Homo sapiens (human)
long-chain fatty acid biosynthetic processCytochrome P450 2C9 Homo sapiens (human)
amide metabolic processCytochrome P450 2C9 Homo sapiens (human)
icosanoid biosynthetic processCytochrome P450 2C9 Homo sapiens (human)
oxidative demethylationCytochrome P450 2C9 Homo sapiens (human)
omega-hydroxylase P450 pathwayCytochrome P450 2C9 Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 2B6Homo sapiens (human)
steroid metabolic processCytochrome P450 2B6Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 2B6Homo sapiens (human)
cellular ketone metabolic processCytochrome P450 2B6Homo sapiens (human)
epoxygenase P450 pathwayCytochrome P450 2B6Homo sapiens (human)
lipid hydroxylationCytochrome P450 3A5Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 3A5Homo sapiens (human)
steroid metabolic processCytochrome P450 3A5Homo sapiens (human)
estrogen metabolic processCytochrome P450 3A5Homo sapiens (human)
alkaloid catabolic processCytochrome P450 3A5Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 3A5Homo sapiens (human)
retinol metabolic processCytochrome P450 3A5Homo sapiens (human)
retinoic acid metabolic processCytochrome P450 3A5Homo sapiens (human)
aflatoxin metabolic processCytochrome P450 3A5Homo sapiens (human)
oxidative demethylationCytochrome P450 3A5Homo sapiens (human)
long-chain fatty acid metabolic processCytochrome P450 2C19Homo sapiens (human)
xenobiotic metabolic processCytochrome P450 2C19Homo sapiens (human)
steroid metabolic processCytochrome P450 2C19Homo sapiens (human)
monoterpenoid metabolic processCytochrome P450 2C19Homo sapiens (human)
epoxygenase P450 pathwayCytochrome P450 2C19Homo sapiens (human)
xenobiotic catabolic processCytochrome P450 2C19Homo sapiens (human)
omega-hydroxylase P450 pathwayCytochrome P450 2C19Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINuclear receptor ROR-gammaHomo sapiens (human)
xenobiotic metabolic processNuclear receptor ROR-gammaHomo sapiens (human)
regulation of glucose metabolic processNuclear receptor ROR-gammaHomo sapiens (human)
regulation of steroid metabolic processNuclear receptor ROR-gammaHomo sapiens (human)
intracellular receptor signaling pathwayNuclear receptor ROR-gammaHomo sapiens (human)
circadian regulation of gene expressionNuclear receptor ROR-gammaHomo sapiens (human)
cellular response to sterolNuclear receptor ROR-gammaHomo sapiens (human)
positive regulation of circadian rhythmNuclear receptor ROR-gammaHomo sapiens (human)
regulation of fat cell differentiationNuclear receptor ROR-gammaHomo sapiens (human)
positive regulation of DNA-templated transcriptionNuclear receptor ROR-gammaHomo sapiens (human)
adipose tissue developmentNuclear receptor ROR-gammaHomo sapiens (human)
T-helper 17 cell differentiationNuclear receptor ROR-gammaHomo sapiens (human)
regulation of transcription by RNA polymerase IINuclear receptor ROR-gammaHomo sapiens (human)
monoatomic anion transportSolute carrier family 22 member 6Homo sapiens (human)
response to organic cyclic compoundSolute carrier family 22 member 6Homo sapiens (human)
inorganic anion transportSolute carrier family 22 member 6Homo sapiens (human)
organic anion transportSolute carrier family 22 member 6Homo sapiens (human)
prostaglandin transportSolute carrier family 22 member 6Homo sapiens (human)
alpha-ketoglutarate transportSolute carrier family 22 member 6Homo sapiens (human)
xenobiotic transportSolute carrier family 22 member 6Homo sapiens (human)
sodium-independent organic anion transportSolute carrier family 22 member 6Homo sapiens (human)
transmembrane transportSolute carrier family 22 member 6Homo sapiens (human)
metanephric proximal tubule developmentSolute carrier family 22 member 6Homo sapiens (human)
renal tubular secretionSolute carrier family 22 member 6Homo sapiens (human)
monoatomic ion transportSolute carrier family 22 member 8Homo sapiens (human)
response to toxic substanceSolute carrier family 22 member 8Homo sapiens (human)
inorganic anion transportSolute carrier family 22 member 8Homo sapiens (human)
prostaglandin transportSolute carrier family 22 member 8Homo sapiens (human)
xenobiotic transportSolute carrier family 22 member 8Homo sapiens (human)
transmembrane transportSolute carrier family 22 member 8Homo sapiens (human)
transport across blood-brain barrierSolute carrier family 22 member 8Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (55)

Processvia Protein(s)Taxonomy
monooxygenase activityCytochrome P450 1A2Homo sapiens (human)
iron ion bindingCytochrome P450 1A2Homo sapiens (human)
protein bindingCytochrome P450 1A2Homo sapiens (human)
electron transfer activityCytochrome P450 1A2Homo sapiens (human)
oxidoreductase activityCytochrome P450 1A2Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 1A2Homo sapiens (human)
enzyme bindingCytochrome P450 1A2Homo sapiens (human)
heme bindingCytochrome P450 1A2Homo sapiens (human)
demethylase activityCytochrome P450 1A2Homo sapiens (human)
caffeine oxidase activityCytochrome P450 1A2Homo sapiens (human)
aromatase activityCytochrome P450 1A2Homo sapiens (human)
estrogen 16-alpha-hydroxylase activityCytochrome P450 1A2Homo sapiens (human)
estrogen 2-hydroxylase activityCytochrome P450 1A2Homo sapiens (human)
hydroperoxy icosatetraenoate dehydratase activityCytochrome P450 1A2Homo sapiens (human)
monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
steroid bindingCytochrome P450 3A4Homo sapiens (human)
iron ion bindingCytochrome P450 3A4Homo sapiens (human)
protein bindingCytochrome P450 3A4Homo sapiens (human)
steroid hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
retinoic acid 4-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
oxidoreductase activityCytochrome P450 3A4Homo sapiens (human)
oxygen bindingCytochrome P450 3A4Homo sapiens (human)
enzyme bindingCytochrome P450 3A4Homo sapiens (human)
heme bindingCytochrome P450 3A4Homo sapiens (human)
vitamin D3 25-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
caffeine oxidase activityCytochrome P450 3A4Homo sapiens (human)
quinine 3-monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
testosterone 6-beta-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
1-alpha,25-dihydroxyvitamin D3 23-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 8,9 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 11,12 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
anandamide 14,15 epoxidase activityCytochrome P450 3A4Homo sapiens (human)
aromatase activityCytochrome P450 3A4Homo sapiens (human)
vitamin D 24-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
estrogen 16-alpha-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
estrogen 2-hydroxylase activityCytochrome P450 3A4Homo sapiens (human)
1,8-cineole 2-exo-monooxygenase activityCytochrome P450 3A4Homo sapiens (human)
monooxygenase activityCytochrome P450 2C8Homo sapiens (human)
iron ion bindingCytochrome P450 2C8Homo sapiens (human)
protein bindingCytochrome P450 2C8Homo sapiens (human)
arachidonic acid epoxygenase activityCytochrome P450 2C8Homo sapiens (human)
retinoic acid 4-hydroxylase activityCytochrome P450 2C8Homo sapiens (human)
caffeine oxidase activityCytochrome P450 2C8Homo sapiens (human)
aromatase activityCytochrome P450 2C8Homo sapiens (human)
estrogen 16-alpha-hydroxylase activityCytochrome P450 2C8Homo sapiens (human)
heme bindingCytochrome P450 2C8Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 2C8Homo sapiens (human)
monooxygenase activityCytochrome P450 2D6Homo sapiens (human)
iron ion bindingCytochrome P450 2D6Homo sapiens (human)
oxidoreductase activityCytochrome P450 2D6Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 2D6Homo sapiens (human)
heme bindingCytochrome P450 2D6Homo sapiens (human)
anandamide 8,9 epoxidase activityCytochrome P450 2D6Homo sapiens (human)
anandamide 11,12 epoxidase activityCytochrome P450 2D6Homo sapiens (human)
anandamide 14,15 epoxidase activityCytochrome P450 2D6Homo sapiens (human)
monooxygenase activityCytochrome P450 2C9 Homo sapiens (human)
iron ion bindingCytochrome P450 2C9 Homo sapiens (human)
arachidonic acid epoxygenase activityCytochrome P450 2C9 Homo sapiens (human)
steroid hydroxylase activityCytochrome P450 2C9 Homo sapiens (human)
arachidonic acid 14,15-epoxygenase activityCytochrome P450 2C9 Homo sapiens (human)
arachidonic acid 11,12-epoxygenase activityCytochrome P450 2C9 Homo sapiens (human)
oxidoreductase activityCytochrome P450 2C9 Homo sapiens (human)
(S)-limonene 6-monooxygenase activityCytochrome P450 2C9 Homo sapiens (human)
(S)-limonene 7-monooxygenase activityCytochrome P450 2C9 Homo sapiens (human)
caffeine oxidase activityCytochrome P450 2C9 Homo sapiens (human)
(R)-limonene 6-monooxygenase activityCytochrome P450 2C9 Homo sapiens (human)
aromatase activityCytochrome P450 2C9 Homo sapiens (human)
heme bindingCytochrome P450 2C9 Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 2C9 Homo sapiens (human)
monooxygenase activityCytochrome P450 2B6Homo sapiens (human)
iron ion bindingCytochrome P450 2B6Homo sapiens (human)
testosterone 16-alpha-hydroxylase activityCytochrome P450 2B6Homo sapiens (human)
heme bindingCytochrome P450 2B6Homo sapiens (human)
testosterone 16-beta-hydroxylase activityCytochrome P450 2B6Homo sapiens (human)
anandamide 8,9 epoxidase activityCytochrome P450 2B6Homo sapiens (human)
anandamide 11,12 epoxidase activityCytochrome P450 2B6Homo sapiens (human)
anandamide 14,15 epoxidase activityCytochrome P450 2B6Homo sapiens (human)
estrogen 2-hydroxylase activityCytochrome P450 2B6Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 2B6Homo sapiens (human)
arachidonic acid epoxygenase activityCytochrome P450 2B6Homo sapiens (human)
monooxygenase activityCytochrome P450 3A5Homo sapiens (human)
iron ion bindingCytochrome P450 3A5Homo sapiens (human)
protein bindingCytochrome P450 3A5Homo sapiens (human)
retinoic acid 4-hydroxylase activityCytochrome P450 3A5Homo sapiens (human)
oxidoreductase activityCytochrome P450 3A5Homo sapiens (human)
oxygen bindingCytochrome P450 3A5Homo sapiens (human)
heme bindingCytochrome P450 3A5Homo sapiens (human)
aromatase activityCytochrome P450 3A5Homo sapiens (human)
estrogen 16-alpha-hydroxylase activityCytochrome P450 3A5Homo sapiens (human)
testosterone 6-beta-hydroxylase activityCytochrome P450 3A5Homo sapiens (human)
monooxygenase activityCytochrome P450 2C19Homo sapiens (human)
iron ion bindingCytochrome P450 2C19Homo sapiens (human)
steroid hydroxylase activityCytochrome P450 2C19Homo sapiens (human)
oxidoreductase activityCytochrome P450 2C19Homo sapiens (human)
(S)-limonene 6-monooxygenase activityCytochrome P450 2C19Homo sapiens (human)
(S)-limonene 7-monooxygenase activityCytochrome P450 2C19Homo sapiens (human)
oxygen bindingCytochrome P450 2C19Homo sapiens (human)
enzyme bindingCytochrome P450 2C19Homo sapiens (human)
heme bindingCytochrome P450 2C19Homo sapiens (human)
(R)-limonene 6-monooxygenase activityCytochrome P450 2C19Homo sapiens (human)
aromatase activityCytochrome P450 2C19Homo sapiens (human)
long-chain fatty acid omega-1 hydroxylase activityCytochrome P450 2C19Homo sapiens (human)
arachidonic acid epoxygenase activityCytochrome P450 2C19Homo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenCytochrome P450 2C19Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingNuclear receptor ROR-gammaHomo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificNuclear receptor ROR-gammaHomo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificNuclear receptor ROR-gammaHomo sapiens (human)
DNA-binding transcription factor activityNuclear receptor ROR-gammaHomo sapiens (human)
protein bindingNuclear receptor ROR-gammaHomo sapiens (human)
oxysterol bindingNuclear receptor ROR-gammaHomo sapiens (human)
zinc ion bindingNuclear receptor ROR-gammaHomo sapiens (human)
ligand-activated transcription factor activityNuclear receptor ROR-gammaHomo sapiens (human)
sequence-specific double-stranded DNA bindingNuclear receptor ROR-gammaHomo sapiens (human)
nuclear receptor activityNuclear receptor ROR-gammaHomo sapiens (human)
solute:inorganic anion antiporter activitySolute carrier family 22 member 6Homo sapiens (human)
protein bindingSolute carrier family 22 member 6Homo sapiens (human)
organic anion transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
prostaglandin transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
alpha-ketoglutarate transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
antiporter activitySolute carrier family 22 member 6Homo sapiens (human)
transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
chloride ion bindingSolute carrier family 22 member 6Homo sapiens (human)
identical protein bindingSolute carrier family 22 member 6Homo sapiens (human)
xenobiotic transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
sodium-independent organic anion transmembrane transporter activitySolute carrier family 22 member 6Homo sapiens (human)
solute:inorganic anion antiporter activitySolute carrier family 22 member 8Homo sapiens (human)
organic anion transmembrane transporter activitySolute carrier family 22 member 8Homo sapiens (human)
prostaglandin transmembrane transporter activitySolute carrier family 22 member 8Homo sapiens (human)
xenobiotic transmembrane transporter activitySolute carrier family 22 member 8Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (16)

Processvia Protein(s)Taxonomy
endoplasmic reticulum membraneCytochrome P450 1A2Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 1A2Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 1A2Homo sapiens (human)
cytoplasmCytochrome P450 3A4Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 3A4Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 3A4Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 2C8Homo sapiens (human)
plasma membraneCytochrome P450 2C8Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C8Homo sapiens (human)
cytoplasmCytochrome P450 2C8Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C8Homo sapiens (human)
mitochondrionCytochrome P450 2D6Homo sapiens (human)
endoplasmic reticulumCytochrome P450 2D6Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 2D6Homo sapiens (human)
cytoplasmCytochrome P450 2D6Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2D6Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 2C9 Homo sapiens (human)
plasma membraneCytochrome P450 2C9 Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C9 Homo sapiens (human)
cytoplasmCytochrome P450 2C9 Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C9 Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 2B6Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2B6Homo sapiens (human)
cytoplasmCytochrome P450 2B6Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 3A5Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 3A5Homo sapiens (human)
endoplasmic reticulum membraneCytochrome P450 2C19Homo sapiens (human)
plasma membraneCytochrome P450 2C19Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C19Homo sapiens (human)
intracellular membrane-bounded organelleCytochrome P450 2C19Homo sapiens (human)
cytoplasmCytochrome P450 2C19Homo sapiens (human)
nucleusNuclear receptor ROR-gammaHomo sapiens (human)
nucleoplasmNuclear receptor ROR-gammaHomo sapiens (human)
nuclear bodyNuclear receptor ROR-gammaHomo sapiens (human)
chromatinNuclear receptor ROR-gammaHomo sapiens (human)
nucleusNuclear receptor ROR-gammaHomo sapiens (human)
plasma membraneSolute carrier family 22 member 6Homo sapiens (human)
caveolaSolute carrier family 22 member 6Homo sapiens (human)
basal plasma membraneSolute carrier family 22 member 6Homo sapiens (human)
basolateral plasma membraneSolute carrier family 22 member 6Homo sapiens (human)
extracellular exosomeSolute carrier family 22 member 6Homo sapiens (human)
protein-containing complexSolute carrier family 22 member 6Homo sapiens (human)
plasma membraneSolute carrier family 22 member 8Homo sapiens (human)
basolateral plasma membraneSolute carrier family 22 member 8Homo sapiens (human)
apical plasma membraneSolute carrier family 22 member 8Homo sapiens (human)
extracellular exosomeSolute carrier family 22 member 8Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (197)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1750639Direct inhibition of CYP1A2 in human liver microsomes using Phenacetin as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750522Drug metabolism in mouse hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750585Half life in Sprague-Dawley rat plasma at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750545Cmax in CD1 mouse at 30 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750650Time-dependent inhibition of CYP2B6 in human liver microsomes using bupropion as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750508Reduction of 2-Methylcitric acid in human hepatocytes derived from methylmalonic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750665Inhibition of human OATP1B1 assessed as reduction in OATP1B1- mediated E217betaG transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750662Inhibition of human MATE1 assessed as reduction in MATE1-mediated metformin transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750582Oral bioavailability in Sprague-Dawley rat at 10 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750515Reduction of CoASH in human hepatocytes derived from methylmalonic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750611Ratio of drug level in Gottingen minipig liver to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 48 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750521Drug metabolism in human hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750609Ratio of drug level in Gottingen minipig liver to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 8 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750651Time-dependent inhibition of CYP2C8 in human liver microsomes using amodiaquine as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750556Volume of distribution of CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750510Reduction of acetyl-CoA in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750518Drug metabolism in human hepatocytes derived from propionic acidemia patient assessed as formation of 2,2-dimethylbutanoic acid-CoA pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750583Oral bioavailability in Sprague-Dawley rat at 50 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750492Reduction of propionyl-CoA in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750672Induction of toxicity in minipig assessed as increase in albumin to globin ratio at 300 mg/kg/day2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750606Drug excretion in Gottingen minipig urine at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750547Cmax in CD1 mouse at 300 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750551Tmax in CD1 mouse at 300 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750505Reduction of 2-Methylcitric acid in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750548Tmax in CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750624Drug metabolism in Sprague-Dawley rat urine assessed as HST5040-carnitine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750516Reduction of CoASH in human hepatocytes derived from methylmalonic acidemia at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750538Inhibition of human OAT3 assessed as reduction in OAT3-mediated tenofovir transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750617Stability in rat hepatocytes assessed as unchanged compound at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750649Time-dependent inhibition of CYP1A2 in human liver microsomes using Phenacetin as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750564Oral bioavailability in CD1 mouse at 300 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750666Inhibition of human OATP1B3 assessed as reduction in OATP1B3-mediated E217betaG transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750670Induction of toxicity in minipig assessed as increase in vacuole size in the epithelial cells of renal tubules at >=50 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750542Ratio of drug level in erythrocyte to plasma in human2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750494Reduction of propionyl-CoA in human hepatocytes derived from methylmalonic acidemia pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750607Drug excretion in Gottingen minipig feces at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750581Induction of toxicity in minipig assessed as induction of adverse effect at 300 mg/kg/day2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750578AUC (0 to infinity) in Sprague-Dawley rat at 10 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750576Clearance in Sprague-Dawley rat at 10 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750656Time-dependent inhibition of CYP3A5 in human liver microsomes using midazolam as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750642Direct inhibition of CYP2C9 in human liver microsomes using diclofenac as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750667Inhibition of human OCT1 assessed as reduction in OCT1-mediated metformin transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750648Direct inhibition of CYP3A5 in human liver microsomes using testosterone as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750513Reduction of CoASH in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750634Drug metabolism in Gottingen minipig plasma assessed as HST5040-glycine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750673Drug metabolism in minipig assessed as beta-oxidation by measuring phase1 metabolite formation at 10 mg/kg administered single dose using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750496Reduction of methylmalonyl-CoA in human hepatocytes derived from methylmalonic acidemia at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750594Tmax in Gottingen minipig at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750633Drug metabolism in Gottingen minipig plasma assessed as HST5040-carnitine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750612Ratio of drug level in Gottingen minipig brain to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 48 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750657Time-dependent inhibition of CYP3A4 in human liver microsomes using testosterone as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750514Reduction of CoASH in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750641Direct inhibition of CYP2C8 in human liver microsomes using amodiaquine as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750493Reduction of propionyl-CoA in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750520Drug metabolism in human hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750530Solubility in pH 7-buffered water2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750631Drug metabolism in Gottingen minipig urine assessed as HST5040-glycine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750636Drug metabolism in rat hepatocytes assessed as beta-oxidation by measuring phase1 metabolite formation at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750593Cmax in Yucatan minipig at 300 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750595Tmax in Yucatan minipig at 20 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750539Ratio of drug level in erythrocyte to plasma in Sprague-Dawley rat2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750610Ratio of drug level in Gottingen minipig liver to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 24 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750533Protein binding in human plasma at 40 uM incubated for 4 hrs by equilibrium dialysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750558AUC (0 to infinity) in CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750646Direct inhibition of CYP3A5 in human liver microsomes using midazolam as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750626Drug metabolism in Sprague-Dawley rat feces assessed as HST5040-glucuronide metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750608Ratio of drug level in Gottingen minipig liver to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 2 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750549Tmax in CD1 mouse at 30 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750536Ratio of drug level in blood to plasma in human2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750570Tmax in Sprague-Dawley rat at 200 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750618Stability in minipig hepatocytes assessed as unchanged compound at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750635Drug metabolism in human hepatocytes assessed as beta-oxidation by measuring phase1 metabolite formation at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750568Tmax in Sprague-Dawley rat at 10 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750591Cmax in Yucatan minipig at 50 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750523Drug metabolism in rat hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750643Direct inhibition of CYP2C19 in human liver microsomes using S-mephenytoin as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750655Time-dependent inhibition of CYP3A4 in human liver microsomes using midazolam as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750535Ratio of drug level in blood to plasma in Gottingen minipig2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750519Drug metabolism in human hepatocytes derived from methylmalonic acidemia patient assessed as formation of 2,2-dimethylbutanoic acid-CoA pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to contro2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750575Volume of distribution in Sprague-Dawley rat at 10 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750659Inhibition of human MDR1 assessed as reduction in NMQ transport at 24000 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750599AUC (0 to infinity) in Gottingen minipig at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750640Direct inhibition of CYP2B6 in human liver microsomes using bupropion as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750671Induction of toxicity in minipig assessed as increase in serum albumin concentration at 300 mg/kg/day2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750628Drug metabolism in Sprague-Dawley rat feces assessed as HST5040-glycine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750537Inhibition of human OAT1 assessed as reduction in OAT1-mediated tenofovir transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750664Inhibition of human OAT3 assessed as reduction in OAT3-mediated tenofovir transport2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750620Drug metabolism in Sprague-Dawley rat plasma assessed as HST5040-glucuronide metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750512Reduction of acetyl-CoA in human hepatocytes pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750501Reduction of acetyl carnitine in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750553Half life in CD1 mouse at 30 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750527Dissociation constant, pKa of the compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750569Tmax in Sprague-Dawley rat at 50 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750638Drug metabolism in Sprague-Dawley rat assessed as beta-oxidation by measuring phase1 metabolite formation at 10 mg/kg administered single dose using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750668Inhibition of human OCT2 assessed as reduction in OCT2-mediated metformin transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750579AUC (0 to infinity) in Sprague-Dawley rat at 50 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750596Tmax in Yucatan minipig at 50 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750541Inhibition of human MATE2K assessed as reduction in MATE2K-mediated metformin transport at 14900 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750647Direct inhibition of CYP3A4 in human liver microsomes using testosterone as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750555Half life in CD1 mouse at 300 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750540Ratio of drug level in erythrocyte to plasma in Gottingen minipig2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750625Drug metabolism in Sprague-Dawley rat urine assessed as HST5040-glycine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750502Reduction of acetyl carnitine in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750654Time-dependent inhibition of CYP2D6 in human liver microsomes using bufuralol as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750552Half life in CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750566Cmax in Sprague-Dawley rat at 50 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750602AUC (0 to infinity) in Yucatan minipig at 125 mg/kg, po using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750658Time-dependent inhibition of CYP3A5 in human liver microsomes using testosterone as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750532Protein binding in Gottingen minipig plasma at 40 uM incubated for 4 hrs by equilibrium dialysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750563Oral bioavailability in CD1 mouse at 100 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750621Drug metabolism in Sprague-Dawley rat plasma assessed as HST5040-carnitine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750504Reduction of acetyl carnitine in human hepatocytes derived from methylmalonic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750586Half life in Sprague-Dawley rat blood at 10 mg/kg, po by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750507Reduction of 2-Methylcitric acid in human hepatocytes derived from methylmalonic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750597Tmax in Yucatan minipig at 125 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750528Apparent permeability of the compound across apical to basal side in human Caco-2 cells2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750577AUC (0 to infinity) in Sprague-Dawley rat at 10 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750491Reduction of propionyl-CoA in human hepatocytes derived from propionic acidemia patient at 100 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750517Reduction of CoASH in human hepatocytes at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750644Direct inhibition of CYP2D6 in human liver microsomes using bufuralol as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750500Reduction of propionyl carnitine in human hepatocytes derived from methylmalonic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750565Cmax in Sprague-Dawley rat at 10 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750588Drug excretion in Sprague-Dawley rat urine at 10 mg/kg, po using radiolabeled compound measured at 1 hr post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750663Inhibition of human OAT1 assessed as reduction in OAT1-mediated tenofovir transport2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750584Oral bioavailability in Sprague-Dawley rat at 200 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750511Reduction of acetyl-CoA in human hepatocytes derived from methylmalonic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750604Drug level in Gottingen minipig blood at 10 mg/kg, po using radiolabeled compound measured after 96 hrs by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750503Reduction of acetyl carnitine in human hepatocytes derived from methylmalonic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750669Induction of toxicity in minipig assessed as increase in number of cells with cytoplasmic vacuoles in renal tubules at >=50 mg/kg/day2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750499Reduction of propionyl carnitine in human hepatocytes derived from methylmalonic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750554Half life in CD1 mouse at 100 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750660Inhibition of human BCRP assessed as reduction in E3S transport at 24000 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750590Cmax in Yucatan minipig at 20 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750587Ratio of drug level in liver to plasma in Sprague-Dawley rat at 10 mg/kg, po measured at 1 hr post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750574Half life in Sprague-Dawley rat at 10 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750529Apparent permeability across apical to basal side in human MDCK2-MDR12021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750526Drug metabolism in mini-pig hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750661Inhibition of human BSEP assessed as reduction in BSEP-mediated taurocholate transport at 345 uM relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750561AUC (0 to infinity) in CD1 mouse at 300 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750534Ratio of drug level in blood to plasma in Sprague-Dawley rat2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750497Reduction of propionyl carnitine in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750557Clearance in CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750573Half life in Sprague-Dawley rat at 200 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750572Half life in Sprague-Dawley rat at 50 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750600AUC (0 to infinity) in Yucatan minipig at 20 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750495Reduction of methylmalonyl-CoA in human hepatocytes derived from methylmalonic acidemia pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750567Cmax in Sprague-Dawley rat at 200 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750615Cytotoxicity against rat hepatocytes assessed as reduction in cell viability using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750598Tmax in Yucatan minipig at 300 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID167125Eye irritation potential accessed using Draize in vivo rabbit eye irritation test2003Journal of medicinal chemistry, Apr-10, Volume: 46, Issue:8
Mapping property distributions of molecular surfaces: algorithm and evaluation of a novel 3D quantitative structure-activity relationship technique.
AID1750622Drug metabolism in Sprague-Dawley rat plasma assessed as HST5040-glycine metabolite formation at 10 mg/kg administered as single dose using radiolabeled compound by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750652Time-dependent inhibition of CYP2C9 in human liver microsomes using diclofenac as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750524Drug metabolism in Beagle dog hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750543Reduction of propionyl-CoA in human hepatocytes derived from methylmalonic acidemia at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750525Drug metabolism in cynomolgus monkey hepatocytes assessed as formation of 2,2-dimethylbutanoic acid-CoA incubated for 1 hrs by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750614Cytotoxicity against human hepatocytes assessed as reduction in cell viability using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750544Cmax in CD1 mouse at 30 mg/kg, iv2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750619Stability in human hepatocytes assessed as unchanged compound at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750562Oral bioavailability in CD1 mouse at 30 mg/kg2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750580AUC (0 to infinity) in Sprague-Dawley rat at 200 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750630Drug metabolism in Gottingen minipig urine assessed as HST5040-carnitine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750613Ratio of drug level in Gottingen minipig spinal cord to plasma ratio at 10 mg/kg, po using radiolabeled compound measured at 48 hrs post dose2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750629Drug metabolism in Gottingen minipig urine assessed as HST5040-glucuronide metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750571Half life in Sprague-Dawley rat at 10 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750509Reduction of acetyl-CoA in human hepatocytes derived from propionic acidemia patient pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750601AUC (0 to infinity) in Yucatan minipig at 50 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750498Reduction of propionyl carnitine in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750627Drug metabolism in Sprague-Dawley rat feces assessed as HST5040-carnitine metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750531Protein binding in Sprague-Dawley rat plasma at 40 uM incubated for 4 hrs by equilibrium dialysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750623Drug metabolism in Sprague-Dawley rat urine assessed as HST5040-glucuronide metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750589Cmax in Gottingen minipig at 10 mg/kg, po using radiolabeled compound by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750592Cmax in Yucatan minipig at 125 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750605Drug level in Gottingen minipig blood at 10 mg/kg, po using radiolabeled compound measured after 72 hrs by quantitative whole-body autoradiography2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750506Reduction of 2-Methylcitric acid in human hepatocytes derived from propionic acidemia patient at 30 uM pretreated for 30 mins followed by 13C-isoleucine addition and measured after 1 hr by MS/MS analysis relative to control2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750559AUC (0 to infinity) in CD1 mouse at 30 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750637Drug metabolism in minipig hepatocytes assessed as beta-oxidation by measuring phase1 metabolite formation at 50 uM measured after 4 hrs2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750546Cmax in CD1 mouse at 100 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750560AUC (0 to infinity) in CD1 mouse at 100 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750550Tmax in CD1 mouse at 100 mg/kg, po2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750603AUC (0 to infinity) in Yucatan minipig at 300 mg/kg, po using radiolabeled compound administered for 3 weeks2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750645Direct inhibition of CYP3A4 in human liver microsomes using midazolam as substrate2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750653Time-dependent inhibition of CYP2C19 in human liver microsomes using S-mephenytoin as substrate preincubated for 30 mins2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750632Drug metabolism in Gottingen minipig plasma assessed as HST5040-glucuronide metabolite formation at 10 mg/kg administered as single dose by LC/MS analysis2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
AID1750616Cytotoxicity against minipig hepatocytes assessed as reduction in cell viability using radiolabeled compound2021Journal of medicinal chemistry, 04-22, Volume: 64, Issue:8
Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (22)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (18.18)29.6817
2010's14 (63.64)24.3611
2020's4 (18.18)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 22.93

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index22.93 (24.57)
Research Supply Index3.43 (2.92)
Research Growth Index4.72 (4.65)
Search Engine Demand Index23.28 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (22.93)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials7 (30.43%)5.53%
Reviews1 (4.35%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other15 (65.22%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]