Page last updated: 2024-12-11

mk-0524

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

MK-0524: a potent orally active human prostaglandin D(2) receptor 1 antagonist; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID9867642
CHEMBL ID426559
CHEBI ID135942
SCHEMBL ID991107
MeSH IDM0507931

Synonyms (54)

Synonym
HY-50175
LAROPIPRANT,CAS:571170-77-9
cardaptive; mk 0524; mk-0524
laropiprant
CHEBI:135942
cordaptive
mk-0524
CHEMBL426559 ,
571170-77-9
D08940
laropiprant (inn/usan)
bdbm50205275
[(3r)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid
mk 0524
laropiprant;(r)-2-(4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid
A25234
unii-g7n11t8o78
cyclopent(b)indole-3-acetic acid, 4-((4-chlorophenyl)methyl)-7-fluoro-1,2,3,4-tetrahydro-5-(methylsulfonyl)-, (3r)-
(-)-((3r)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta(b)indol-3-yl)acetic acid
laropiprant [usan:inn:ban]
cardaptive
g7n11t8o78 ,
tedaptive
BCP9000944
BCPP000161
laropiprant [mart.]
laropiprant [mi]
laropiprant [who-dd]
laropiprant [inn]
laropiprant [ema epar]
laropiprant [usan]
CS-0539
gtpl3356
mk0524
2-[(3r)-4-[(4-chlorophenyl)methyl]-7-fluoro-5-methanesulfonyl-1h,2h,3h,4h-cyclopenta[b]indol-3-yl]acetic acid
AM81247
cyclopent[b]indole-3-acetic acid, 4-[(4-chlorophenyl)methyl]-7-fluoro-1,2,3,4-tetrahydro-5-(methylsulfonyl)-, (3r)-
2-[(3r)-4-[(4-chlorophenyl)methyl]-7-fluoro-5-methylsulfonyl-2,3-dihydro-1h-cyclopenta[b]indol-3-yl]acetic acid
SCHEMBL991107
DTXSID60205756
AKOS030526850
NCGC00345790-10
laropiprant (mk-0524)
laropiprant; mk-0524
EX-A2099
DB11629
(r)-2-(4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid
AS-17012
BCP02136
Q412291
((3r)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta(b)indol-3-yl)acetic acid
EN300-25916161
AT34794
AC-35835

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Treatment-related adverse experiences (AEs) related to flushing, pruritis, rash, gastrointestinal upset and elevations in liver transaminases and fasting serum glucose occurred more frequently with ERN/LRPT added to statin vs."( Efficacy and safety of extended-release niacin/laropiprant plus statin vs. doubling the dose of statin in patients with primary hypercholesterolaemia or mixed dyslipidaemia.
Ceska, R; Giezek, H; Gil-Extremera, B; Maccubbin, D; Mao, A; McCrary Sisk, C; Paolini, JF; Shah, S; Vandormael, K, 2010
)
0.36
"The safety and tolerability profile for ERN/LRPT was similar to that of ERN-NSP, except for fewer flushing-related adverse experiences and discontinuations with ERN/LRPT than ERN-NSP."( Safety of extended-release niacin/laropiprant in patients with dyslipidemia.
Ballantyne, CM; Bays, H; Betteridge, A; Koren, M; Kuznetsova, O; Maccubbin, D; McKenney, J; Mitchel, Y; Paolini, JF; Sapre, A; Sisk, CM,
)
0.13
"The addition of LRP to ERN, by reducing the side effect 'flushing', may enable lipidologists and physicians to use niacin more widely as part of lipid modification therapy, especially since the combination can be safely added to statins."( Safety and tolerability of extended-release niacin with laropiprant.
Ammori, BJ; Issa, B; Kwok, S; Soran, H; Yadav, R, 2012
)
0.38
" Adverse experiences (AEs) typically associated with niacin (flushing, pruritus, increased glucose, increased uric acid) were more common with ERN/LRPT+SIMVA, and hepatic-related laboratory AEs were more common with ATORVA."( Lipid-altering efficacy and safety profile of co-administered extended release niacin/laropiprant and simvastatin versus atorvastatin in patients with mixed hyperlipidemia.
Blomqvist, P; Chen, E; Chen, F; Davidson, M; Maccubbin, D; McKenney, JM; Sirah, W; Sisk, CM; Yan, L, 2013
)
0.39
" ERN-LRPT was also associated with an excess of serious adverse experiences (AEs), some of which were unexpected (infections and bleeding)."( Safety and tolerability of extended-release niacin-laropiprant: Pooled analyses for 11,310 patients in 12 controlled clinical trials.
Bays, H; Gleim, G; Kuznetsova, O; Maccubbin, D; McKenney, J; Mitchel, Y; Sapre, A; Sirah, W,
)
0.13
"Pooled data from 11,310 patients revealed that, except for reduced flushing, the safety profile of ERN-LRPT was similar to that of ERN-NSP; LRPT did not appear to adversely affect the side-effect profile of ERN."( Safety and tolerability of extended-release niacin-laropiprant: Pooled analyses for 11,310 patients in 12 controlled clinical trials.
Bays, H; Gleim, G; Kuznetsova, O; Maccubbin, D; McKenney, J; Mitchel, Y; Sapre, A; Sirah, W,
)
0.13
"Extended-release niacin with laropiprant did not significantly reduce the risk of major vascular events and increased the risk of serious adverse events in Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE), but its net effects on health and healthcare costs are unknown."( Effects of Vascular and Nonvascular Adverse Events and of Extended-Release Niacin With Laropiprant on Health and Healthcare Costs.
Armitage, J; Collins, R; Gray, A; Haynes, R; Hopewell, JC; Kent, S; Landray, MJ; Mihaylova, B; Parish, S, 2016
)
0.43
" The net effects of niacin-laropiprant on quality-adjusted life years and hospital care costs (2012 UK £; converted into US $ using purchasing power parity index) during 4 years in HPS2-THRIVE were evaluated using estimates of the impact of serious adverse events on health-related quality of life and hospital care costs."( Effects of Vascular and Nonvascular Adverse Events and of Extended-Release Niacin With Laropiprant on Health and Healthcare Costs.
Armitage, J; Collins, R; Gray, A; Haynes, R; Hopewell, JC; Kent, S; Landray, MJ; Mihaylova, B; Parish, S, 2016
)
0.43
" However, the trial also identified previously unrecognized serious adverse effects (including new-onset diabetes, bleeding, and infection)."( Serious Adverse Effects of Extended-release Niacin/Laropiprant: Results From the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial.
Armitage, J; Chen, F; Haynes, R; Hopewell, JC; Landray, MJ; Li, J; Parish, S; Valdes-Marquez, E, 2019
)
0.51
" The excess risks of these serious adverse events were larger in the first year after starting niacin-laropiprant therapy than in later years (except for the excess of infection, which did not appear to attenuate with time), and the risks of nonfatal and fatal events were similarly increased."( Serious Adverse Effects of Extended-release Niacin/Laropiprant: Results From the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial.
Armitage, J; Chen, F; Haynes, R; Hopewell, JC; Landray, MJ; Li, J; Parish, S; Valdes-Marquez, E, 2019
)
0.51
"Practitioners or patients considering the use of niacin (in addition to, or instead of, a statin) despite the lack of evidence of cardiovascular benefits (at least when added to effective statin therapy) should take account of the significant risks of these serious adverse effects when making such decisions."( Serious Adverse Effects of Extended-release Niacin/Laropiprant: Results From the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial.
Armitage, J; Chen, F; Haynes, R; Hopewell, JC; Landray, MJ; Li, J; Parish, S; Valdes-Marquez, E, 2019
)
0.51

Pharmacokinetics

ExcerptReferenceRelevance
" The apparent terminal half-life (t(1/2)) was 26."( Pharmacokinetics of laropiprant and glucuronide metabolite in patients with severe renal insufficiency.
Bi, S; Desai, R; Dishy, V; Keshavarz, S; Lai, E; Lazarus, N; Lunde, NM; Luo, WL; Schwartz, M; Smith, WB; Stone, J; Stroh, M; Wagner, J; Wenning, L,
)
0.13
" Comparability was declared if the 90% confidence intervals (CIs) for the geometric mean ratio (GMR; warfarin + LRPT/warfarin alone) of area under the plasma concentration curve from zero to infinity (AUC0-infinity) for R+- and S(-)-warfarin were contained within (0."( Influence of laropiprant, a selective prostaglandin D2 receptor 1 antagonist, on the pharmacokinetics and pharmacodynamics of warfarin.
Gipson, A; Johnson-Levonas, AO; Lai, E; Lasseter, KC; Liu, F; Schwartz, JI; Stroh, M; Wagner, JA,
)
0.13
" Comparability would be declared if the 90% confidence intervals for the geometric mean ratio of AUC0-24hr and Cmax in the absence and presence of laropiprant were within predefined bounds (0."( Effect of laropiprant, a PGD2 receptor 1 antagonist, on estradiol and norgestimate pharmacokinetics after oral contraceptive administration in women.
Gutierrez, MJ; Johnson-Levonas, AO; Lai, E; Liu, F; Pramanik, B; Schwartz, JI; Wagner, JA; Wang, YH,
)
0.13
" Median time of occurrence of C(max) and mean half-life of immunoreactive digoxin were comparable in the presence and absence of laropiprant."( Effects of laropiprant, a selective prostaglandin D2 receptor 1 antagonist, on the steady-state pharmacokinetics of digoxin in healthy adult subjects.
Buckland, M; Connolly, S; Denker, A; Johnson-Levonas, AO; Lai, E; Liu, F; Vessey, L; Wagner, JA; Wenning, L, 2010
)
0.36
" Three separate open-label, randomized, crossover studies evaluated the potential for pharmacokinetic interaction between extended-release niacin (with and without concomitant laropiprant) and simvastatin in healthy subjects."( Effects of Extended-Release Niacin and Extended-Release Niacin/Laropiprant on the Pharmacokinetics of Simvastatin in Healthy Subjects.
Crumley, T; De Kam, PJ; Dishy, V; Lai, E; Lauring, B; Liu, F; Sisk, C; Wagner, J; Wenning, L,
)
0.13

Compound-Compound Interactions

ExcerptReferenceRelevance
" These results demonstrate that laropiprant does not enhance in vivo platelet reactivity, either alone or in combination with niacin."( Laropiprant in combination with extended-release niacin does not alter urine 11-dehydrothromboxane B2, a marker of in vivo platelet function, in healthy, hypercholesterolemic, and diabetic subjects.
Chao, A; Cote, J; Dishy, V; Gutierrez, M; Lai, E; Larson, P; Laterza, O; Lauring, B; Luo, WL; Patterson, J; Wagner, JA, 2009
)
0.35
"Understanding and documentation of drug-drug interactions (DDIs) are an important component of drug development, and of clinical therapeutics."( Drug-drug noninteractions.
Greenblatt, DJ, 2009
)
0.35

Bioavailability

ExcerptReferenceRelevance
" Absolute oral bioavailability values in rats, dogs and monkeys were 50, 70 and 8%, respectively."( The pharmacokinetics and disposition of MK-0524, a Prosglandin D2 Receptor 1 antagonist, in rats, dogs and monkeys.
Chang, SW; Dean, BJ; Franklin, RB; Karanam, BV; Pereira, T; Reddy, V; Seto, C; Xia, YQ, 2007
)
0.61
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
" Results from early dosing and formulation studies have culminated in the development of a combination extended-release (ER) niacin/laropiprant tablet aimed at providing the beneficial lipid-modifying effects of niacin, while reducing niacin-induced flushing."( Extended-release niacin/laropiprant: reducing niacin-induced flushing to better realize the benefit of niacin in improving cardiovascular risk factors.
Ballantyne, CM; Bays, HE; Davidson, M; Kuznetsova, O; Lai, E; Maccubbin, D; Mitchel, YB; Norquist, JM; Paolini, JF; Pasternak, R; Sisk, CM; Waters, MG, 2008
)
0.35
" The improved tolerability of ERN/LRPT supports a simplified 1 g-->2 g dosing regimen of niacin, a therapy proven to reduce cardiovascular risk."( Lipid-modifying efficacy and tolerability of extended-release niacin/laropiprant in patients with primary hypercholesterolaemia or mixed dyslipidaemia.
Bays, HE; Betteridge, A; Elinoff, V; Elis, A; Kuznetsova, O; Maccubbin, D; Mitchel, Y; Olsson, AG; Paolini, JF; Pasternak, RC; Reyes, R; Sirah, W; Sisk, CM; Yu, Q, 2008
)
0.35
" We compared flushing with ERN/LRPT dosed by a simplified 1-g --> 2-g regimen versus gradually titrated niacin extended-release (N-ER; given as NIASPAN, trademark of Kos Life Sciences LLC)."( Flushing profile of extended-release niacin/laropiprant versus gradually titrated niacin extended-release in patients with dyslipidemia with and without ischemic cardiovascular disease.
Davidson, M; Gavish, D; Koren, MJ; Maccubbin, D; Macdonell, G; Mallick, M; Mitchel, Y; Paolini, JF; Pasternak, RC; Sisk, CM, 2009
)
0.35
" There is a need for further research in order to come to a clear conclusion regarding combined therapies of aspirin and laropiprant pretreatment, as well as exact dosage requirements."( Mechanisms of flushing due to niacin and abolition of these effects.
Arora, R; Sood, A, 2009
)
0.35
"This open-label study evaluated the influence of hepatic insufficiency on the pharmacokinetics of laropiprant (LRPT), a prostaglandin D(2) receptor-1 antagonist, to guide clinicians in the event of inadvertent dosing in patients with hepatic insufficiency."( Pharmacokinetics of laropiprant, a selective prostaglandin D2 receptor 1 antagonist, in patients with moderate hepatic impairment.
Johnson-Levonas, AO; Lai, E; Lasseter, KC; Liu, F; Luk, JA; Lunde, NM; Marbury, TC; Nirula, A; Wagner, JA; Wang, YH, 2011
)
0.37
"The favorable safety and tolerability profile of ERN/LRPT for up to 1 year supports the use of LRPT to achieve improved therapeutic dosing of niacin, an agent with comprehensive lipid-modifying efficacy and shown to reduce cardiovascular risk."( Safety of extended-release niacin/laropiprant in patients with dyslipidemia.
Ballantyne, CM; Bays, H; Betteridge, A; Koren, M; Kuznetsova, O; Maccubbin, D; McKenney, J; Mitchel, Y; Paolini, JF; Sapre, A; Sisk, CM,
)
0.13
" The favorable safety profile supports the use of LRP to achieve higher therapeutic dosing of niacin."( Safety and tolerability of extended-release niacin with laropiprant.
Ammori, BJ; Issa, B; Kwok, S; Soran, H; Yadav, R, 2012
)
0.38
"The relationship of the exanthematous eruption with lower body weight and the increase in dosage suggests a pharmacokinetic effect that may be related to increased exposure to niacin or its metabolites and provoked by inhibition of the DP1 receptor with laropiprant, as we have not seen this rash with niacin used alone."( A high incidence of exanthematous eruption associated with niacin/laropiprant combination in Hong Kong Chinese patients.
Chang, M; Hu, M; Tomlinson, B; Yang, YL, 2013
)
0.39
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
indolyl carboxylic acid
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (9)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Thromboxane A2 receptor Homo sapiens (human)Ki0.58150.00061.24073.8040AID277845; AID277846
Prostaglandin E2 receptor EP1 subtypeHomo sapiens (human)Ki1.16000.00910.66351.5849AID277846
Prostaglandin E2 receptor EP4 subtypeHomo sapiens (human)Ki15.20000.00010.47443.1623AID277849
Prostaglandin F2-alpha receptorHomo sapiens (human)Ki9.99100.03103.38039.9910AID277850
Prostaglandin E2 receptor EP3 subtypeHomo sapiens (human)Ki0.89200.00031.70816.8000AID277848
Prostaglandin E2 receptor EP2 subtypeHomo sapiens (human)Ki0.13600.00100.54483.0000AID277847
Prostacyclin receptorHomo sapiens (human)Ki6.62800.00320.49586.6280AID277851
Prostaglandin D2 receptorHomo sapiens (human)IC50 (µMol)0.00070.00011.15837.3000AID277852; AID277879
Prostaglandin D2 receptorHomo sapiens (human)Ki0.00060.00060.49131.4000AID277844
Prostaglandin D2 receptor 2Homo sapiens (human)Ki0.74500.00060.67358.0000AID277874
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Thromboxane A2 receptor Homo sapiens (human)Kd0.01090.01096.10278.2000AID277845
Prostaglandin D2 receptorHomo sapiens (human)Kd0.00000.00000.00000.0000AID277844
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (64)

Processvia Protein(s)Taxonomy
smooth muscle contractionThromboxane A2 receptor Homo sapiens (human)
G protein-coupled receptor signaling pathwayThromboxane A2 receptor Homo sapiens (human)
response to nutrientThromboxane A2 receptor Homo sapiens (human)
response to xenobiotic stimulusThromboxane A2 receptor Homo sapiens (human)
positive regulation of blood coagulationThromboxane A2 receptor Homo sapiens (human)
response to testosteroneThromboxane A2 receptor Homo sapiens (human)
thromboxane A2 signaling pathwayThromboxane A2 receptor Homo sapiens (human)
response to ethanolThromboxane A2 receptor Homo sapiens (human)
positive regulation of angiogenesisThromboxane A2 receptor Homo sapiens (human)
positive regulation of smooth muscle contractionThromboxane A2 receptor Homo sapiens (human)
cellular response to lipopolysaccharideThromboxane A2 receptor Homo sapiens (human)
negative regulation of cell migration involved in sprouting angiogenesisThromboxane A2 receptor Homo sapiens (human)
inflammatory responseThromboxane A2 receptor Homo sapiens (human)
positive regulation of blood pressureThromboxane A2 receptor Homo sapiens (human)
positive regulation of vasoconstrictionThromboxane A2 receptor Homo sapiens (human)
positive regulation of cytosolic calcium ion concentrationThromboxane A2 receptor Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayThromboxane A2 receptor Homo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
adenylate cyclase-activating dopamine receptor signaling pathwayProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
response to lipopolysaccharideProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
inflammatory responseProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
negative regulation of cytokine productionProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
positive regulation of cytokine productionProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
immune responseProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
adenylate cyclase-modulating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
JNK cascadeProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
response to mechanical stimulusProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
response to nematodeProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
regulation of ossificationProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
response to lipopolysaccharideProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
negative regulation of integrin activationProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
T-helper cell differentiationProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
negative regulation of inflammatory responseProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
positive regulation of inflammatory responseProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
regulation of stress fiber assemblyProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
bone developmentProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
ERK1 and ERK2 cascadeProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
cellular response to mechanical stimulusProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
negative regulation of eosinophil extravasationProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
cellular response to prostaglandin E stimulusProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
inflammatory responseProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin F2-alpha receptorHomo sapiens (human)
parturitionProstaglandin F2-alpha receptorHomo sapiens (human)
positive regulation of cell population proliferationProstaglandin F2-alpha receptorHomo sapiens (human)
positive regulation of gene expressionProstaglandin F2-alpha receptorHomo sapiens (human)
response to estradiolProstaglandin F2-alpha receptorHomo sapiens (human)
response to lipopolysaccharideProstaglandin F2-alpha receptorHomo sapiens (human)
negative regulation of apoptotic processProstaglandin F2-alpha receptorHomo sapiens (human)
cellular response to prostaglandin D stimulusProstaglandin F2-alpha receptorHomo sapiens (human)
inflammatory responseProstaglandin F2-alpha receptorHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin F2-alpha receptorHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstaglandin F2-alpha receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
cell deathProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
positive regulation of fever generationProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
intestine smooth muscle contractionProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
inflammatory responseProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
negative regulation of gastric acid secretionProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
response to nematodeProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
response to lipopolysaccharideProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
response to progesteroneProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
regulation of cell population proliferationProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
cellular response to prostaglandin E stimulusProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
inflammatory responseProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerProstacyclin receptorHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayProstacyclin receptorHomo sapiens (human)
cell-cell signalingProstacyclin receptorHomo sapiens (human)
negative regulation of platelet-derived growth factor receptor signaling pathwayProstacyclin receptorHomo sapiens (human)
response to lipopolysaccharideProstacyclin receptorHomo sapiens (human)
negative regulation of smooth muscle cell proliferationProstacyclin receptorHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstacyclin receptorHomo sapiens (human)
inflammatory responseProstacyclin receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin D2 receptorHomo sapiens (human)
male sex determinationProstaglandin D2 receptorHomo sapiens (human)
sleepProstaglandin D2 receptorHomo sapiens (human)
mast cell degranulationProstaglandin D2 receptorHomo sapiens (human)
adenosine metabolic processProstaglandin D2 receptorHomo sapiens (human)
cellular response to prostaglandin D stimulusProstaglandin D2 receptorHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationProstaglandin D2 receptorHomo sapiens (human)
inflammatory responseProstaglandin D2 receptorHomo sapiens (human)
chemotaxisProstaglandin D2 receptor 2Homo sapiens (human)
immune responseProstaglandin D2 receptor 2Homo sapiens (human)
G protein-coupled receptor signaling pathwayProstaglandin D2 receptor 2Homo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayProstaglandin D2 receptor 2Homo sapiens (human)
calcium-mediated signalingProstaglandin D2 receptor 2Homo sapiens (human)
positive regulation of G protein-coupled receptor signaling pathwayProstaglandin D2 receptor 2Homo sapiens (human)
negative regulation of male germ cell proliferationProstaglandin D2 receptor 2Homo sapiens (human)
neuropeptide signaling pathwayProstaglandin D2 receptor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (11)

Processvia Protein(s)Taxonomy
thromboxane A2 receptor activityThromboxane A2 receptor Homo sapiens (human)
guanyl-nucleotide exchange factor activityThromboxane A2 receptor Homo sapiens (human)
protein bindingThromboxane A2 receptor Homo sapiens (human)
D1 dopamine receptor bindingProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
prostaglandin E receptor activityProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
prostaglandin E receptor activityProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
protein bindingProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
prostaglandin F receptor activityProstaglandin F2-alpha receptorHomo sapiens (human)
prostaglandin E receptor activityProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
prostaglandin E receptor activityProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
guanyl-nucleotide exchange factor activityProstacyclin receptorHomo sapiens (human)
prostacyclin receptor activityProstacyclin receptorHomo sapiens (human)
prostaglandin J receptor activityProstaglandin D2 receptorHomo sapiens (human)
prostaglandin D receptor activityProstaglandin D2 receptorHomo sapiens (human)
protein bindingProstaglandin D2 receptorHomo sapiens (human)
prostaglandin J receptor activityProstaglandin D2 receptor 2Homo sapiens (human)
G protein-coupled receptor activityProstaglandin D2 receptor 2Homo sapiens (human)
prostaglandin D receptor activityProstaglandin D2 receptor 2Homo sapiens (human)
prostaglandin F receptor activityProstaglandin D2 receptor 2Homo sapiens (human)
neuropeptide bindingProstaglandin D2 receptor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
acrosomal vesicleThromboxane A2 receptor Homo sapiens (human)
plasma membraneThromboxane A2 receptor Homo sapiens (human)
nuclear speckThromboxane A2 receptor Homo sapiens (human)
plasma membraneThromboxane A2 receptor Homo sapiens (human)
plasma membraneProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP1 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
membraneProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP4 subtypeHomo sapiens (human)
extracellular regionProstaglandin F2-alpha receptorHomo sapiens (human)
cytoplasmProstaglandin F2-alpha receptorHomo sapiens (human)
plasma membraneProstaglandin F2-alpha receptorHomo sapiens (human)
plasma membraneProstaglandin F2-alpha receptorHomo sapiens (human)
nuclear envelopeProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
membraneProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP3 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
plasma membraneProstaglandin E2 receptor EP2 subtypeHomo sapiens (human)
cytosolProstacyclin receptorHomo sapiens (human)
plasma membraneProstacyclin receptorHomo sapiens (human)
plasma membraneProstacyclin receptorHomo sapiens (human)
plasma membraneProstaglandin D2 receptorHomo sapiens (human)
membraneProstaglandin D2 receptorHomo sapiens (human)
plasma membraneProstaglandin D2 receptorHomo sapiens (human)
plasma membraneProstaglandin D2 receptor 2Homo sapiens (human)
plasma membraneProstaglandin D2 receptor 2Homo sapiens (human)
neuron projectionProstaglandin D2 receptor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (27)

Assay IDTitleYearJournalArticle
AID277854Activity at human TP receptor in platelet rich plasma assessed as inhibition U44619-induced platelet aggregation2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277848Binding affinity to human EP3 receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277880Selectivity for human DP receptor over human EP2 receptor2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277847Binding affinity to human EP2 receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277879Activity at sheep DP receptor by PRP assay2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277874Activity at CRTH2 receptor2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277876Inhibition of PGD2-induced nasal airway resistance in sheep allergic rhinitis model at 0.1 mg/kg, iv2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277875Inhibition of PGD2-induced nasal airway resistance in sheep allergic rhinitis model at 0.03 mg/kg, iv2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277877Plasma concentration in sheep allergic rhinitis model after 30 mins at 0.03 mg/kg, iv2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277845Binding affinity to human TP receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277855Selectivity for human DP receptor over human TP receptor2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277846Binding affinity to human EP1 receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277856Selectivity for human DP receptor over human TP receptor by PRP assay2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277850Binding affinity to human FP receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277857Metabolic stability in rat hepatocytes after 2 hrs at 50 uM2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277844Binding affinity to human DP receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277849Binding affinity to human EP4 receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277851Binding affinity to human IP receptor expressed in HEK293 cells2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277853Activity at human DP receptor in platelet rich plasma assessed as inhibition of PGD2-induced cAMP accumulation2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277878Plasma concentration in sheep allergic rhinitis model after 30 mins at 0.1 mg/kg, iv2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID277852Activity at human DP receptor in washed platelets assessed as inhibition of PGD2-induced cAMP accumulation2007Journal of medicinal chemistry, Feb-22, Volume: 50, Issue:4
Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524).
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (110)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's27 (24.55)29.6817
2010's80 (72.73)24.3611
2020's3 (2.73)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 14.69

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index14.69 (24.57)
Research Supply Index5.19 (2.92)
Research Growth Index4.70 (4.65)
Search Engine Demand Index10.37 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (14.69)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials57 (47.11%)5.53%
Reviews19 (15.70%)6.00%
Case Studies3 (2.48%)4.05%
Observational1 (0.83%)0.25%
Other41 (33.88%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]