Page last updated: 2024-12-05

fp 83

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

FP 83: structure given in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID3395
CHEMBL ID3183067
CHEBI ID31627
SCHEMBL ID1649401
MeSH IDM0165215

Synonyms (60)

Synonym
AC-455
flurbiprofen axetil
fp-83
ropion
(1,1'-biphenyl)-4-acetic acid, 2-fluoro-alpha-methyl-, 1-(acetyloxy)ethyl ester
lipo-flurbiprofen axetil
lfp 83
1-acetoxyethyl 2-(2-fluoro-4-biphenylyl)propionate
2-fluoro-alpha-methyl-(1,1'-biphenyl)-4-acetic acid 1-(acetyloxy)ethyl ester
1-acetoxyethyl-2-(2-fluoro-4-biphenylyl)propionate
4-biphenylacetic acid, 2-fluoro-alpha-methyl-, 1-acetoxyethyl ester
liposomal flurbiprofen axetil
lipfen
flurbiprofen axetil (jan)
91503-79-6
fp 83
ropion (tn)
D01475
1-acetoxyethyl 2-(2-fluorobiphenyl-4-yl)propanoate
FT-0668761
1-acetyloxyethyl 2-(3-fluoro-4-phenylphenyl)propanoate
NCGC00182710-02
NCGC00182710-01
lfp83
cas-91503-79-6
tox21_113023
dtxsid8048600 ,
dtxcid1028526
tox21_113023_1
1-acetoxyethyl-2-(2-fluoro-4-biphenyl)propionate
fp83
i0ou31pui5 ,
unii-i0ou31pui5
flurbiprofen axetil [jan]
(1,1'-biphenyl)-4-acetic acid, 2-fluoro-.alpha.-methyl-, 1-(acetyloxy)ethyl ester
lfp-83
flurbiprofen axetil [who-dd]
S6457
ropiopn
1-acetoxyethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate
SCHEMBL1649401
AKOS024464989
CHEMBL3183067
J-521373
CHEBI:31627
F17835
acetoxyethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate
DS-8257
ropion; ropiopn; lipfen; lfp-83
BCP21336
mfcd00900049
DB14938
flurbiprofen axetil,(s)
HY-101481
lfp 83;ropiopn;lfp-83;lfp83
AMY18543
CS-0021519
Q27280207
A855151
F1176

Research Excerpts

Toxicity

ExcerptReferenceRelevance
"Pain on injection is an acknowledged adverse effect (AE) of propofol administration for the induction of general anesthesia."( Efficacy and safety of flurbiprofen axetil in the prevention of pain on propofol injection: a systematic review and meta-analysis.
Bao, H; Luo, Z; Shi, H; Wang, H; Xu, L; Yu, Y; Zhang, L; Zhang, X; Zhang, Y; Zhao, Y; Zhu, J, 2014
)
0.4
" In terms of drug safety, there were no adverse effects (AEs) reported between flurbiprofen axetil-based regimens and placebo regimens."( Efficacy and safety of flurbiprofen axetil in the prevention of pain on propofol injection: a systematic review and meta-analysis.
Bao, H; Luo, Z; Shi, H; Wang, H; Xu, L; Yu, Y; Zhang, L; Zhang, X; Zhang, Y; Zhao, Y; Zhu, J, 2014
)
0.4
" More studies are required to assess its adverse effects."( Efficacy and safety of flurbiprofen axetil in the prevention of pain on propofol injection: a systematic review and meta-analysis.
Bao, H; Luo, Z; Shi, H; Wang, H; Xu, L; Yu, Y; Zhang, L; Zhang, X; Zhang, Y; Zhao, Y; Zhu, J, 2014
)
0.4

Pharmacokinetics

ExcerptReferenceRelevance
"The paper is to report the establishment of a population pharmacokinetic model for flurbiprofen (FP), an active metabolite of flurbiprofen axetil (FA)."( [Population pharmacokinetic modeling of flurbiprofen].
Gong, SJ; Huang, PF; Lin, WW; Wang, CL, 2010
)
0.36
" Therefore, it is of great significance to compare the in vivo pharmacokinetic behaviors of R-FP and S-FP."( Comparison of in vivo pharmacokinetic behaviors of R- and S-flurbiprofen after intravenous injection of flurbiprofen axetil.
He, Y; Li, M; Qin, F; Qin, M; Tian, B; Zhi, D, 2023
)
0.91

Compound-Compound Interactions

ExcerptReferenceRelevance
"To observe the effect of propofol combined with flurbiprofen axetil for abortion anesthesia."( [Clinical observation of propofol combined with flurbiprofen axetil for induced abortion anesthesia].
Guo, QL; Xie, YQ; Yang, HW, 2006
)
0.33
"Propofol combined with flurbiprofen axetil gives more efficient anesthesia for induced abortion patients in gynecology department."( [Clinical observation of propofol combined with flurbiprofen axetil for induced abortion anesthesia].
Guo, QL; Xie, YQ; Yang, HW, 2006
)
0.33
"a To observe the analgesic effect of fentanyl combined with flurbiprofen axetil for postoperative analgesia after gynecologic surgery."( [Postoperative analgesia with fentanyl combined with flurbiprofen axetil following gynecologic surgery for turnor].
Bai, XH; Cao, LH; Lin, WQ; Wen, LL; Zhong, ZJ, 2009
)
0.35
"Flurbiprofen axetil combined with fentanyl for postoperative analgesia can significantly reduce fentanyl dose and the incidence of adverse effects associated with fentanyl without obviously affecting the coagulation and gastrointestinal functions."( [Postoperative analgesia with fentanyl combined with flurbiprofen axetil following gynecologic surgery for turnor].
Bai, XH; Cao, LH; Lin, WQ; Wen, LL; Zhong, ZJ, 2009
)
0.35
"EA intervention combined with anesthetics is effective in reducing the dosage of the supplemented Sauteralgyl and the degree of postoperative nausea, and in improving postoperative gastrointestinal functional recovery in patients undergoing pneumectomy."( [Electroacupuncture Intervention Combined with Anesthetics for Analgesia and Post-surgical Gastrointestinal Recovery in Pneumectomy Patients].
Chen, TY; Ma, W; Wang, K; Wu, YY; Xu, JJ; Zhou, J, 2015
)
0.42
" We hypothesize that different doses of oxycodone hydrochloride combined with flurbiprofen axetil would generate great results on postoperative intravenous analgesia in lower abdominal patients."( Effect of oxycodone hydrochloride combined with flurbiprofen axetil for intravenous patient-controlled analgesia in lower abdominal patients: A randomized trial.
Fang, J; Lian, Y; Wu, Y; Xiang, X; Yuan, X, 2018
)
0.48
"75 mg/kg oxycodone hydrochloride combined with flurbiprofen axetil can provide safe and effective postoperative analgesia for lower abdominal patients, with fewer adverse reactions."( Effect of oxycodone hydrochloride combined with flurbiprofen axetil for intravenous patient-controlled analgesia in lower abdominal patients: A randomized trial.
Fang, J; Lian, Y; Wu, Y; Xiang, X; Yuan, X, 2018
)
0.48
" Nonetheless, only few studies have evaluated the clinical therapeutic effects of lidocaine combination with flurbiprofen axetil to prevent pain on injection of propofol."( Clinical therapeutic effects of lidocaine combination with flurbiprofen axetil for reducing propofol-induced pain in adults: A protocol for systematic review and meta-analysis.
Fu, J; Lu, G; Sun, W; Ye, X; Yu, J, 2020
)
0.56
"This study will provide high-quality evidence for the clinical therapeutic effects of lidocaine combination with flurbiprofen axetil for reducing pain on injection of propofol in adult patients."( Clinical therapeutic effects of lidocaine combination with flurbiprofen axetil for reducing propofol-induced pain in adults: A protocol for systematic review and meta-analysis.
Fu, J; Lu, G; Sun, W; Ye, X; Yu, J, 2020
)
0.56
"To evaluate the safety and efficacy of sedation and analgesia using dexmedetomidine combined with flurbiprofen axetil in multiple complex teeth extraction under local anesthesia."( [Evaluation of the application of dexmedetomidine combined with flurbiprofen axetil in extraction of multiple complex teeth under local anesthesia].
He, H; Liu, H; Qi, M; Shao, Y; Sheng, L, 2021
)
0.62
"According to the inclusion and exclusion criteria of the study, 40 patients scheduled for multiple complex teeth (4-6) extraction were randomly divided into 2 groups: experimental group (sedation and analgesia using dexmedetomidine combined with flurbiprofen axetil in addition to local anesthesia, n=20) and control group (local anesthesia, n=20)."( [Evaluation of the application of dexmedetomidine combined with flurbiprofen axetil in extraction of multiple complex teeth under local anesthesia].
He, H; Liu, H; Qi, M; Shao, Y; Sheng, L, 2021
)
0.62
"Sedation and analgesia using dexmedetomidine combined with flurbiprofen axetil in addition to local anesthesia is a safe and effective approach in multiple complex teeth extraction."( [Evaluation of the application of dexmedetomidine combined with flurbiprofen axetil in extraction of multiple complex teeth under local anesthesia].
He, H; Liu, H; Qi, M; Shao, Y; Sheng, L, 2021
)
0.62
"To explore the effect of dexmedetomidine combined with flurbiprofen axetil on postoperative analgesia and immune function in patients with lung cancer after radical operation."( Application effect of dexmedetomidine combined with flurbiprofen axetil and flurbiprofen axetil monotherapy in radical operation of lung cancer and evaluation of the immune function.
Chen, Y; Du, J; Tao, H; Zong, S,
)
0.13
"60 lung cancer patients undergoing open chest radical surgery were selected and randomly divided into D & F Group (dexmedetomidine combined with flurbiprofen axetil) and F Group (flurbiprofen axetil), with 30 cases in each group."( Application effect of dexmedetomidine combined with flurbiprofen axetil and flurbiprofen axetil monotherapy in radical operation of lung cancer and evaluation of the immune function.
Chen, Y; Du, J; Tao, H; Zong, S,
)
0.13
"Flurbiprofen axetil can improve postoperative pain, but combined with dexmedetomidine better effect, postoperative comfort and immune function of patients were significantly improved."( Application effect of dexmedetomidine combined with flurbiprofen axetil and flurbiprofen axetil monotherapy in radical operation of lung cancer and evaluation of the immune function.
Chen, Y; Du, J; Tao, H; Zong, S,
)
0.13
"To investigated the effects of sufentanil in combination with flurbiprofen axetil and dexmedetomidine for patient-controlled intravenous analgesia (PCIA) on patients after open gastrointestinal tumor surgery, and compared this combination with traditional PCIA with pure opioids or epidural analgesia (PCEA)."( Analgesic effects of sufentanil in combination with flurbiprofen axetil and dexmedetomidine after open gastrointestinal tumor surgery: a retrospective study.
Chen, YJ; Huang, J; Li, TT; Liu, F; Wang, TH; Xiong, LL; Yin, L, 2022
)
0.72
"The analgesic effects of PCIA with sufentanil in combination with flurbiprofen axetil and dexmedetomidine on postoperative analgesia was better than that of traditional pure opioids PCIA, and similar with that of PCEA."( Analgesic effects of sufentanil in combination with flurbiprofen axetil and dexmedetomidine after open gastrointestinal tumor surgery: a retrospective study.
Chen, YJ; Huang, J; Li, TT; Liu, F; Wang, TH; Xiong, LL; Yin, L, 2022
)
0.72
" This study aimed to compare the analgesic effects of tramadol alone and combined with butorphanol or flurbiprofen axetil after a cesarean section."( Analgesic outcomes of tramadol alone and in combination with Butorphanol or Flurbiprofen Axetil after cesarean section: a retrospective study with propensity score matching analysis.
Bao, X; Deng, Q; Li, H; Liang, Y; Liu, W; Peng, J; Tan, D; Wu, Z; Yan, G; Yang, G, 2022
)
0.72
"To determine the analgesic effect of flurbiprofen axetil (FBA) combined with half standard-dose opioids in patients undergoing primary unilateral total knee arthroplasty (TKA)."( Analgesia with reduced incidence of adverse reactions using flurbiprofen axetil in combination with half standard-dose opioids in primary total knee arthroplasty.
Cai, H; Lin, Q; Liu, J; Shen, J; Wu, X; Xiao, J; Zhao, C; Zhu, J, 2023
)
0.91
" All patients received the same dose of FBA in the form of a patient-controlled intravenous analgesia but in the control group this was combined with a standard-dose of opioids and in the experimental group with a half standard-dose of opioids."( Analgesia with reduced incidence of adverse reactions using flurbiprofen axetil in combination with half standard-dose opioids in primary total knee arthroplasty.
Cai, H; Lin, Q; Liu, J; Shen, J; Wu, X; Xiao, J; Zhao, C; Zhu, J, 2023
)
0.91
"The analgesic effect of FBA in combination with half standard-dose opioids was similar to that of FBA in combination with conventional standard-dose opioids, but the incidence of adverse effects involving nausea/vomiting in the experimental group were significantly reduced."( Analgesia with reduced incidence of adverse reactions using flurbiprofen axetil in combination with half standard-dose opioids in primary total knee arthroplasty.
Cai, H; Lin, Q; Liu, J; Shen, J; Wu, X; Xiao, J; Zhao, C; Zhu, J, 2023
)
0.91

Bioavailability

ExcerptReferenceRelevance
"9 times higher than that of the flurbiprofen sodium eye drops respectively, which meant that the ocular bioavailability was improved greatly by the novel preparation."( [Ion-sensitive nanoemulsion-in situ gel system for ophthalmic delivery of flurbiprofen axetil].
Gan, L; Gan, Y; Shen, JQ; Zhu, CL; Zhu, JB, 2010
)
0.36
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
" We have examined the inhibitory effect of free fatty acid (FFA), a binding inhibitor for site II of HSA, on the binding of flurbiprofen in-vitro and in-vivo by ultrafiltration, to establish an effective dosage of FP-ax."( Dosage plan of a flurbiprofen injection product using inhibition of protein binding by lipid emulsion in rats.
Arimori, K; Higuchi, S; Kawai, K; Ogata, K; Takamura, N; Tokunaga, J, 2008
)
0.35
" In three other groups (n = 8 in each group), the selected dosage of 10 mg/kg was administrated intravenously at 6, 12 and 24 hours after I/R."( Therapeutic time window of flurbiprofen axetil's neuroprotective effect in a rat model of transient focal cerebral ischemia.
Dong, HL; Liu, JL; Lu, Y; Sang, HF; Wang, C; Xiong, LZ, 2008
)
0.35
" A novel population pharmacokinetic model is developed to estimate the individual pharmacokinetic parameter for patients intravenous injecting FA in terms of patients' characteristics and dosing history, and to design a prior dosage regimen."( [Population pharmacokinetic modeling of flurbiprofen].
Gong, SJ; Huang, PF; Lin, WW; Wang, CL, 2010
)
0.36
"Compared with the control group, the VAS score at 48 h after surgery, and the dosage of the supplemented Sauteralgyl were evidently lower, and the time of both exhaust and defecation after surgery was significantly earlier, and the degree of nausea after surgery was obviously milder in patients of the EA group (P<0."( [Electroacupuncture Intervention Combined with Anesthetics for Analgesia and Post-surgical Gastrointestinal Recovery in Pneumectomy Patients].
Chen, TY; Ma, W; Wang, K; Wu, YY; Xu, JJ; Zhou, J, 2015
)
0.42
"EA intervention combined with anesthetics is effective in reducing the dosage of the supplemented Sauteralgyl and the degree of postoperative nausea, and in improving postoperative gastrointestinal functional recovery in patients undergoing pneumectomy."( [Electroacupuncture Intervention Combined with Anesthetics for Analgesia and Post-surgical Gastrointestinal Recovery in Pneumectomy Patients].
Chen, TY; Ma, W; Wang, K; Wu, YY; Xu, JJ; Zhou, J, 2015
)
0.42
" The pain intensity, consumed sufentanil dosage of the PCA, and the side effects was not different between groups."( Effect of flurbiprofen axetil on postoperative delirium for elderly patients.
Chen, H; Han, F; Hu, Y; Wang, L; Wang, X; Wang, Y; Wei, L; Zhao, W, 2019
)
0.51
" The present study tested the hypothesis that multimodal analgesia with combined ropivacaine wound infiltration and intravenous flurbiprofen axetil after radical thyroidectomy provided better analgesia than a single dosage of tramadol."( Multimodal analgesia with ropivacaine wound infiltration and intravenous flurbiprofen axetil provides enhanced analgesic effects after radical thyroidectomy: a randomized controlled trial.
Li, X; Tan, H; Yang, J; Yu, L, 2019
)
0.51
" The dosage of sufentanil and the times of pressing analgesia pump in group D & F were significantly less than those in group F (p<0."( Application effect of dexmedetomidine combined with flurbiprofen axetil and flurbiprofen axetil monotherapy in radical operation of lung cancer and evaluation of the immune function.
Chen, Y; Du, J; Tao, H; Zong, S,
)
0.13
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
organic molecular entityAny molecular entity that contains carbon.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (14)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency38.90180.007215.758889.3584AID1224835
RAR-related orphan receptor gammaMus musculus (house mouse)Potency0.94390.006038.004119,952.5996AID1159521
caspase 7, apoptosis-related cysteine proteaseHomo sapiens (human)Potency26.60320.013326.981070.7614AID1346978
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency2.98490.001022.650876.6163AID1224838
estrogen nuclear receptor alphaHomo sapiens (human)Potency15.49070.000229.305416,493.5996AID743069; AID743075
GVesicular stomatitis virusPotency9.77170.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency13.80290.00108.379861.1304AID1645840
caspase-3Homo sapiens (human)Potency26.60320.013326.981070.7614AID1346978
Interferon betaHomo sapiens (human)Potency9.77170.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency9.77170.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency29.84930.002319.595674.0614AID651631
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency5.62340.009610.525035.4813AID1479145
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency9.77170.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency9.77170.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (168)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (50)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (37)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (33)

Assay IDTitleYearJournalArticle
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (98)

TimeframeStudies, This Drug (%)All Drugs %
pre-19902 (2.04)18.7374
1990's0 (0.00)18.2507
2000's15 (15.31)29.6817
2010's56 (57.14)24.3611
2020's25 (25.51)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 9.82

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index9.82 (24.57)
Research Supply Index5.08 (2.92)
Research Growth Index4.90 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (9.82)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials58 (56.86%)5.53%
Reviews2 (1.96%)6.00%
Case Studies2 (1.96%)4.05%
Observational0 (0.00%)0.25%
Other40 (39.22%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]