Assay ID | Title | Year | Journal | Article |
AID1296008 | Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening | 2020 | SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
| Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. |
AID1347160 | Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
| Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347159 | Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
| Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1346987 | P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5
| A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1346986 | P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5
| A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347093 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347100 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347094 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347092 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347086 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | | | |
AID1347089 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1508630 | Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4
| A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347090 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347096 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347095 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347101 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347099 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347108 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347106 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347105 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347097 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347082 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347107 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347154 | Primary screen GU AMC qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
| Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347102 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347104 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347098 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347083 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347091 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347103 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4
| Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID509545 | Agonist activity at hedgehog receptor | 2010 | Bioorganic & medicinal chemistry, Sep-15, Volume: 18, Issue:18
| Modulators of the hedgehog signaling pathway. |
AID502890 | Activation of Shh in smo-expressing MEF at 0.5 uM after 30 hrs by luciferase reporter assay | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502894 | Ratio of EC50 for Shh in mouse Shh Light2 cells to EC50 for Shh in mouse Shh Light2 cells in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502889 | Activation of Shh in smo gene-deficient MEF at 0.5 uM after 30 hrs by luciferase reporter assay | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502885 | Activation of Shh in ptch1 gene-deficient MEF assessed as beta-galactosidase activity after 30 hrs by chemiluminescence assay in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502884 | Activation of Shh in mouse Shh Light2 cells after 30 hrs by luciferase reporter gene assay | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID1321065 | Activity at Smo in mouse C3H10T1/2 cells assessed as induction of cell differentiation into osteoblast at 10 uM incubated for 6 days by alkaline phosphatase assay relative to GSA-10 | 2016 | European journal of medicinal chemistry, Oct-04, Volume: 121 | Design, synthesis and biological characterization of a new class of osteogenic (1H)-quinolone derivatives. |
AID502891 | Inhibition of BODIPY-cyclopamine binding to Smo expressed in HEK293T cells after 1 hr by fluorescence microscopy | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID512617 | Induction of osteogenesis in mouse C3H10T1/2 cells assessed as induction of osteoblast specific marker alkaline phosphatase by immunofluorescence method | 2005 | Nature chemical biology, Jul, Volume: 1, Issue:2
| Diversity-oriented synthesis: exploring the intersections between chemistry and biology. |
AID502892 | Inhibition of BODIPY-cyclopamine binding to Smo N-terminal cysteine domain expressed in HEK293T cells at 5 uM after 4 hrs by fluorescence microscopy | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502886 | Activation of Shh in mouse Shh Light2 cells assessed as beta-galactosidase activity after 30 hrs by luciferase reporter gene assay in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID502893 | Inhibition of BODIPY-cyclopamine binding to Smo C-terminal cytoplasmic domain expressed in HEK293T cells at 5 uM after 4 hrs by fluorescence microscopy | 2006 | Nature chemical biology, Jan, Volume: 2, Issue:1
| Purmorphamine activates the Hedgehog pathway by targeting Smoothened. |
AID1321064 | Activity at Smo in mouse C3H10T1/2 cells assessed as induction of cell differentiation into osteoblast incubated for 6 days by alkaline phosphatase assay | 2016 | European journal of medicinal chemistry, Oct-04, Volume: 121 | Design, synthesis and biological characterization of a new class of osteogenic (1H)-quinolone derivatives. |
AID1347411 | qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary | 2020 | ACS chemical biology, 07-17, Volume: 15, Issue:7
| High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |