Page last updated: 2024-11-10

purmorphamine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

purmorphamine: structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

purmorphamine : A member of the class of purines that is purine substituted at C-2 by a 1-naphthyloxy group, at C-4 by a 4-morpholinophenylamino group, and at N-9 by a cyclohexyl group. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID5284329
CHEMBL ID1221984
CHEBI ID63053
SCHEMBL ID1548273
MeSH IDM0445467

Synonyms (60)

Synonym
chebi:63053 ,
CHEMBL1221984 ,
HSCI1_000224
MOLMAP_000073
2-(1-napthoxy)-6-(4-morpholinoanilino)-9-cyclohexylpurine
purmorphamine
2-(1-naphthoxy)-6-(4-morpholinoanilino)-9-cyclohexylpurine
shh signaling antagonist vi
9-cyclohexyl-n-[4-(4-morpholinyl)phenyl]-2-(1-naphthalenyloxy)-9h-purin-6-amine
nsc747596
nsc-747596
9-cyclohexyl-n-(4-morpholin-4-ylphenyl)-2-naphthalen-1-yloxypurin-6-amine
bdbm50324671
9-cyclohexyl-n-[4-(morpholin-4-yl)phenyl]-2-(naphthalen-1-yloxy)-9h-purin-6-amine
483367-10-8
9h-purin-6-amine, 9-cyclohexyl-n-(4-(4-morpholinyl)phenyl)-2-(1-naphthalenyloxy)-
HY-15108
CS-1135
FT-0674154
NCGC00344053-01
S3042
BRD-K73397362-001-01-7
smr004701397
MLS006010334
SCHEMBL1548273
c31h32n6o2
9-cyclohexyl-n-(4-morpholinophenyl)-2-(naphthalen-1-yloxy)-9h-purin-6-amine
unii-pb12m2f8ky
DTXSID20415293
purmorphamine [mi]
9-cyclohexyl-n-(4-(4-morpholinyl)phenyl)-2-(1-naphthalenyloxy)-9h-purin-6-amine
PB12M2F8KY ,
FYBHCRQFSFYWPY-UHFFFAOYSA-N
9-cyclohexyl-n-[4-(morpholinyl)phenyl]-2-(1-naphthalenyloxy)-9h-purin-6-amine
HB3412
9-cyclohexyl-n-[4-(4-morpholinyl)ph enyl]-2-(1-naphthalenyloxy)-9h-purin-6-amine
AKOS024458218
HMS3650O20
J-519503
EX-A348
HMS3651D16
mfcd09037557
NCGC00344053-09
SW219909-1
BCP03687
purmorphamine - cas 483367-10-8
SR-01000946316-1
sr-01000946316
Q15409344
AMY20087
SB19498
9-cyclohexyl-n-[4-(morpholin-4-yl)phenyl]-2-(naphthalen-1-yloxy)-9h-purin-6 -amine
CCG-269857
A871928
gtpl10356
AS-56474
F11453
purmorphamine (gmp)
HY-15108G
CS-0626102

Research Excerpts

Overview

Purmorphamine (PMA) is a small molecule that, according to some studies, possesses certain differentiation effects. Purmorphamine is a 2,6,9-trisubstituted purine compound. It was discovered through cell-based high-throughput screening.

ExcerptReferenceRelevance
"Purmorphamine (PMA) is a small molecule that, according to some studies, possesses certain differentiation effects."( Purmorphamine as a Shh Signaling Activator Small Molecule Promotes Motor Neuron Differentiation of Mesenchymal Stem Cells Cultured on Nanofibrous PCL Scaffold.
Ai, J; Bahrami, N; Bayat, M; Ebrahimi-Barough, S; Khakbiz, M; Mohamadnia, A; Yazdankhah, M, 2017
)
2.62
"Purmorphamine, which is a 2,6,9-trisubstituted purine compound, was discovered through cell-based high-throughput screening from a heterocycle combinatorial library. "( A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells.
Ding, Q; Ding, S; Gray, NS; Schultz, PG; Wu, X, 2002
)
1.76
"Purmorphamine is a new molecule with osteogenesis-inducing activity in multipotent progenitor cells. "( The effect of purmorphamine on osteoblast phenotype expression of human bone marrow mesenchymal cells cultured on titanium.
Bellesini, LS; Beloti, MM; Rosa, AL, 2005
)
2.13
"Purmorphamine is a novel small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, but there has been no evaluation of its effect on human cells to date. "( Purmorphamine enhances osteogenic activity of human osteoblasts derived from bone marrow mesenchymal cells.
Bellesini, LS; Beloti, MM; Rosa, AL, 2005
)
3.21

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
" Preliminary preclinical studies revealed extended bioavailability and low toxicity of this compound."( Discovery of small-molecule modulators of the secretin receptor: Purmorphamine as novel anti-hypertensive agent.
Annapureddy, RR; Chow, BK; El-Nezami, H; Nawabjan, SA; Singh, K; Zhang, L, 2022
)
0.96
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
osteogenesis regulatorAny compound that induces or regulates osteogenesis.
SMO receptor agonistAn agonist that enhances the action of smoothened (SMO) receptor.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (4)

ClassDescription
purinesA class of imidazopyrimidines that consists of purine and its substituted derivatives.
morpholinesAny compound containing morpholine as part of its structure.
aromatic etherAny ether in which the oxygen is attached to at least one aryl substituent.
secondary amino compoundA compound formally derived from ammonia by replacing two hydrogen atoms by organyl groups.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (11)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency21.31740.01237.983543.2770AID1645841
EWS/FLI fusion proteinHomo sapiens (human)Potency0.00190.001310.157742.8575AID1259256
GVesicular stomatitis virusPotency4.77240.01238.964839.8107AID1645842
Interferon betaHomo sapiens (human)Potency4.77240.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency4.77240.01238.964839.8107AID1645842
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency4.77240.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency4.77240.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Smoothened homologHomo sapiens (human)IC50 (µMol)1.50000.00040.16401.5000AID502891
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Smoothened homologMus musculus (house mouse)EC50 (µMol)0.80000.00200.16390.8000AID1321064
Sonic hedgehog proteinMus musculus (house mouse)EC50 (µMol)1.00000.00881.59514.0000AID502884
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
interferon gamma precursorHomo sapiens (human)AC5014.55500.128015.173038.6100AID1259418; AID1259420
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (112)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IISmoothened homologHomo sapiens (human)
negative regulation of transcription by RNA polymerase IISmoothened homologHomo sapiens (human)
vasculogenesisSmoothened homologHomo sapiens (human)
osteoblast differentiationSmoothened homologHomo sapiens (human)
in utero embryonic developmentSmoothened homologHomo sapiens (human)
cell fate specificationSmoothened homologHomo sapiens (human)
neural crest cell migrationSmoothened homologHomo sapiens (human)
negative regulation of protein phosphorylationSmoothened homologHomo sapiens (human)
heart loopingSmoothened homologHomo sapiens (human)
positive regulation of neuroblast proliferationSmoothened homologHomo sapiens (human)
positive regulation of mesenchymal cell proliferationSmoothened homologHomo sapiens (human)
determination of left/right asymmetry in lateral mesodermSmoothened homologHomo sapiens (human)
type B pancreatic cell developmentSmoothened homologHomo sapiens (human)
protein import into nucleusSmoothened homologHomo sapiens (human)
apoptotic processSmoothened homologHomo sapiens (human)
G protein-coupled receptor signaling pathwaySmoothened homologHomo sapiens (human)
smoothened signaling pathwaySmoothened homologHomo sapiens (human)
ventral midline determinationSmoothened homologHomo sapiens (human)
neuroblast proliferationSmoothened homologHomo sapiens (human)
midgut developmentSmoothened homologHomo sapiens (human)
anterior/posterior pattern specificationSmoothened homologHomo sapiens (human)
gene expressionSmoothened homologHomo sapiens (human)
positive regulation of gene expressionSmoothened homologHomo sapiens (human)
negative regulation of gene expressionSmoothened homologHomo sapiens (human)
spinal cord dorsal/ventral patterningSmoothened homologHomo sapiens (human)
dentate gyrus developmentSmoothened homologHomo sapiens (human)
cerebellar cortex morphogenesisSmoothened homologHomo sapiens (human)
thalamus developmentSmoothened homologHomo sapiens (human)
dorsal/ventral neural tube patterningSmoothened homologHomo sapiens (human)
central nervous system neuron differentiationSmoothened homologHomo sapiens (human)
cerebral cortex developmentSmoothened homologHomo sapiens (human)
positive regulation of cell migrationSmoothened homologHomo sapiens (human)
negative regulation of epithelial cell differentiationSmoothened homologHomo sapiens (human)
hair follicle morphogenesisSmoothened homologHomo sapiens (human)
multicellular organism growthSmoothened homologHomo sapiens (human)
positive regulation of multicellular organism growthSmoothened homologHomo sapiens (human)
positive regulation of protein import into nucleusSmoothened homologHomo sapiens (human)
odontogenesis of dentin-containing toothSmoothened homologHomo sapiens (human)
negative regulation of apoptotic processSmoothened homologHomo sapiens (human)
negative regulation of DNA bindingSmoothened homologHomo sapiens (human)
positive regulation of smoothened signaling pathwaySmoothened homologHomo sapiens (human)
positive regulation of organ growthSmoothened homologHomo sapiens (human)
astrocyte activationSmoothened homologHomo sapiens (human)
skeletal muscle fiber developmentSmoothened homologHomo sapiens (human)
smooth muscle tissue developmentSmoothened homologHomo sapiens (human)
forebrain morphogenesisSmoothened homologHomo sapiens (human)
homeostasis of number of cells within a tissueSmoothened homologHomo sapiens (human)
epithelial cell proliferationSmoothened homologHomo sapiens (human)
positive regulation of epithelial cell proliferationSmoothened homologHomo sapiens (human)
protein stabilizationSmoothened homologHomo sapiens (human)
myoblast migrationSmoothened homologHomo sapiens (human)
negative regulation of hair follicle developmentSmoothened homologHomo sapiens (human)
contact inhibitionSmoothened homologHomo sapiens (human)
atrial septum morphogenesisSmoothened homologHomo sapiens (human)
mammary gland epithelial cell differentiationSmoothened homologHomo sapiens (human)
epithelial-mesenchymal cell signalingSmoothened homologHomo sapiens (human)
somite developmentSmoothened homologHomo sapiens (human)
pancreas morphogenesisSmoothened homologHomo sapiens (human)
left/right axis specificationSmoothened homologHomo sapiens (human)
cellular response to cholesterolSmoothened homologHomo sapiens (human)
dopaminergic neuron differentiationSmoothened homologHomo sapiens (human)
mesenchymal to epithelial transition involved in metanephric renal vesicle formationSmoothened homologHomo sapiens (human)
positive regulation of branching involved in ureteric bud morphogenesisSmoothened homologHomo sapiens (human)
regulation of somatic stem cell population maintenanceSmoothened homologHomo sapiens (human)
regulation of heart morphogenesisSmoothened homologHomo sapiens (human)
pattern specification processSmoothened homologHomo sapiens (human)
central nervous system developmentSmoothened homologHomo sapiens (human)
commissural neuron axon guidanceSmoothened homologHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (24)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
cAMP-dependent protein kinase inhibitor activitySmoothened homologHomo sapiens (human)
G protein-coupled receptor activitySmoothened homologHomo sapiens (human)
patched bindingSmoothened homologHomo sapiens (human)
protein bindingSmoothened homologHomo sapiens (human)
oxysterol bindingSmoothened homologHomo sapiens (human)
protein kinase A catalytic subunit bindingSmoothened homologHomo sapiens (human)
protein sequestering activitySmoothened homologHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (34)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endocytic vesicle membraneSmoothened homologMus musculus (house mouse)
ciliary membraneSmoothened homologMus musculus (house mouse)
extracellular regionSonic hedgehog proteinMus musculus (house mouse)
nucleoplasmSonic hedgehog proteinMus musculus (house mouse)
endoplasmic reticulum lumenSonic hedgehog proteinMus musculus (house mouse)
plasma membraneSonic hedgehog proteinMus musculus (house mouse)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
Golgi apparatusSmoothened homologHomo sapiens (human)
caveolaSmoothened homologHomo sapiens (human)
late endosomeSmoothened homologHomo sapiens (human)
endoplasmic reticulumSmoothened homologHomo sapiens (human)
endoplasmic reticulum-Golgi intermediate compartmentSmoothened homologHomo sapiens (human)
centrioleSmoothened homologHomo sapiens (human)
plasma membraneSmoothened homologHomo sapiens (human)
ciliumSmoothened homologHomo sapiens (human)
endocytic vesicle membraneSmoothened homologHomo sapiens (human)
intracellular membrane-bounded organelleSmoothened homologHomo sapiens (human)
ciliary membraneSmoothened homologHomo sapiens (human)
extracellular exosomeSmoothened homologHomo sapiens (human)
ciliary tipSmoothened homologHomo sapiens (human)
9+0 non-motile ciliumSmoothened homologHomo sapiens (human)
ciliumSmoothened homologHomo sapiens (human)
dendriteSmoothened homologHomo sapiens (human)
plasma membraneSmoothened homologHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (45)

Assay IDTitleYearJournalArticle
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID509545Agonist activity at hedgehog receptor2010Bioorganic & medicinal chemistry, Sep-15, Volume: 18, Issue:18
Modulators of the hedgehog signaling pathway.
AID502890Activation of Shh in smo-expressing MEF at 0.5 uM after 30 hrs by luciferase reporter assay2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502894Ratio of EC50 for Shh in mouse Shh Light2 cells to EC50 for Shh in mouse Shh Light2 cells in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502889Activation of Shh in smo gene-deficient MEF at 0.5 uM after 30 hrs by luciferase reporter assay2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502885Activation of Shh in ptch1 gene-deficient MEF assessed as beta-galactosidase activity after 30 hrs by chemiluminescence assay in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502884Activation of Shh in mouse Shh Light2 cells after 30 hrs by luciferase reporter gene assay2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID1321065Activity at Smo in mouse C3H10T1/2 cells assessed as induction of cell differentiation into osteoblast at 10 uM incubated for 6 days by alkaline phosphatase assay relative to GSA-102016European journal of medicinal chemistry, Oct-04, Volume: 121Design, synthesis and biological characterization of a new class of osteogenic (1H)-quinolone derivatives.
AID502891Inhibition of BODIPY-cyclopamine binding to Smo expressed in HEK293T cells after 1 hr by fluorescence microscopy2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID512617Induction of osteogenesis in mouse C3H10T1/2 cells assessed as induction of osteoblast specific marker alkaline phosphatase by immunofluorescence method2005Nature chemical biology, Jul, Volume: 1, Issue:2
Diversity-oriented synthesis: exploring the intersections between chemistry and biology.
AID502892Inhibition of BODIPY-cyclopamine binding to Smo N-terminal cysteine domain expressed in HEK293T cells at 5 uM after 4 hrs by fluorescence microscopy2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502886Activation of Shh in mouse Shh Light2 cells assessed as beta-galactosidase activity after 30 hrs by luciferase reporter gene assay in presence of 100 nM 3-keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl cyclopamine2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID502893Inhibition of BODIPY-cyclopamine binding to Smo C-terminal cytoplasmic domain expressed in HEK293T cells at 5 uM after 4 hrs by fluorescence microscopy2006Nature chemical biology, Jan, Volume: 2, Issue:1
Purmorphamine activates the Hedgehog pathway by targeting Smoothened.
AID1321064Activity at Smo in mouse C3H10T1/2 cells assessed as induction of cell differentiation into osteoblast incubated for 6 days by alkaline phosphatase assay2016European journal of medicinal chemistry, Oct-04, Volume: 121Design, synthesis and biological characterization of a new class of osteogenic (1H)-quinolone derivatives.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (88)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's15 (17.05)29.6817
2010's62 (70.45)24.3611
2020's11 (12.50)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 40.66

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index40.66 (24.57)
Research Supply Index4.50 (2.92)
Research Growth Index5.00 (4.65)
Search Engine Demand Index56.47 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (40.66)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews3 (3.37%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other86 (96.63%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]