Page last updated: 2024-12-04

sk&f 10047

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

SKF-10,047 : An organic heterotricyclic compound that is metazocine in which the methyl group at the N-position is replaced by an allyl group. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID44364124
CHEMBL ID147585
MeSH IDM0058977
PubMed CID1235
CHEMBL ID274099
SCHEMBL ID20348443
MeSH IDM0058977
PubMed CID3036222
CHEMBL ID74019
MeSH IDM0058977

Synonyms (58)

Synonym
sk&f-10047
sk-10047
CHEMBL147585 ,
bdbm50368882
alazocine
2,6-methano-3-benzazocin-8-ol, 1,2,3,4,5,6-hexahydro-3-allyl-6,11-dimethyl-
skf-10,047
win 19631
n-allylnormetazocine
skf 10047
SMP1_000010
LOPAC0_000107
NCGC00162063-02
NCGC00162063-01
7619-35-4
10-allyl-1,13-dimethyl-10-azatricyclo[7.3.1.0~2,7~]trideca-2,4,6-trien-4-ol
CHEMBL274099 ,
(+)3-allyl-6,11-dimethyl-1,2,3,4,5,6-hexahydro-2,6-methano-benzo[d]azocin-8-ol
bdbm50009063
3-allyl-8-hydroxy-6,11-dimethyl-1,2,3,4,5,6-hexahydro-2,6-methano-benzo[d]azocinium
CCG-204202
NCGC00015003-03
NCGC00015003-04
(+)-n-allylnormetazocine
1,13-dimethyl-10-prop-2-enyl-10-azatricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-4-ol
SCHEMBL20348443
DTXSID301018249
825594-24-9
CHEMBL74019 ,
alazocine, (+)-
58640-82-7
(+)-skf 10047
unii-yr49mn7q8g
yr49mn7q8g ,
(2s-(2alpha,6alpha,11r*))-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol
(+)-skf 10.047
2,6-methano-3-benzazocin-8-ol, 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-, (2s-(2alpha,6alpha,11r*))-
lopac-a-114
NCGC00015003-01
NCGC00024985-01
tocris-1079
NCGC00015003-02
lopac-a-156
skf 10047 (+/-)
bdbm82075
cas_133005-41-1
cid_11957451
gtpl6677
(+)-skampf10047
(+)-skf-10047
DTXSID90207344
(2s,6s,11s)-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol
NCGC00485006-01
(+)-sk&f10047
Q27088807
(1s,9s,13s)-1,13-dimethyl-10-prop-2-enyl-10-azatricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-4-ol
sk&f-10047-(+)
2,6-methano-3-benzazocin-8-ol, 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propen-1-yl)-, (2s,6s,11s)-

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (23)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
TDP1 proteinHomo sapiens (human)Potency23.10930.000811.382244.6684AID686978
thyroid stimulating hormone receptorHomo sapiens (human)Potency15.87440.001318.074339.8107AID926
cytochrome P450 2D6 isoform 1Homo sapiens (human)Potency11.23110.00207.533739.8107AID891
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency3.98110.031610.279239.8107AID884; AID885
muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)Potency16.38500.00106.000935.4813AID943; AID944
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency3.98111.000012.224831.6228AID885
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Glutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)Ki0.37000.00030.81966.6900AID157448; AID157592
Sigma non-opioid intracellular receptor 1Homo sapiens (human)Ki3.95000.00000.490110.0000AID204468; AID204625
Sigma non-opioid intracellular receptor 1Homo sapiens (human)Ki0.42900.00000.490110.0000AID203990
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
lipid transportSigma non-opioid intracellular receptor 1Homo sapiens (human)
nervous system developmentSigma non-opioid intracellular receptor 1Homo sapiens (human)
G protein-coupled opioid receptor signaling pathwaySigma non-opioid intracellular receptor 1Homo sapiens (human)
regulation of neuron apoptotic processSigma non-opioid intracellular receptor 1Homo sapiens (human)
protein homotrimerizationSigma non-opioid intracellular receptor 1Homo sapiens (human)
lipid transportSigma non-opioid intracellular receptor 1Homo sapiens (human)
nervous system developmentSigma non-opioid intracellular receptor 1Homo sapiens (human)
G protein-coupled opioid receptor signaling pathwaySigma non-opioid intracellular receptor 1Homo sapiens (human)
regulation of neuron apoptotic processSigma non-opioid intracellular receptor 1Homo sapiens (human)
protein homotrimerizationSigma non-opioid intracellular receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein-coupled opioid receptor activitySigma non-opioid intracellular receptor 1Homo sapiens (human)
protein bindingSigma non-opioid intracellular receptor 1Homo sapiens (human)
G protein-coupled opioid receptor activitySigma non-opioid intracellular receptor 1Homo sapiens (human)
protein bindingSigma non-opioid intracellular receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (14)

Processvia Protein(s)Taxonomy
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)
nuclear envelopeSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear inner membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear outer membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulum membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
lipid dropletSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytosolSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic densitySigma non-opioid intracellular receptor 1Homo sapiens (human)
membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
growth coneSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytoplasmic vesicleSigma non-opioid intracellular receptor 1Homo sapiens (human)
anchoring junctionSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic density membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear envelopeSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear inner membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear outer membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulum membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
lipid dropletSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytosolSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic densitySigma non-opioid intracellular receptor 1Homo sapiens (human)
membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
growth coneSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytoplasmic vesicleSigma non-opioid intracellular receptor 1Homo sapiens (human)
anchoring junctionSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic density membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (44)

Assay IDTitleYearJournalArticle
AID204468Tested for binding affinity against sigma receptors1994Journal of medicinal chemistry, Apr-15, Volume: 37, Issue:8
Structural features important for sigma 1 receptor binding.
AID157448Inhibitory activity against sigma receptor isolated from guinea pig brain cortex membrane using PCP as radioligand at a concentration of 10e-5 M1996Journal of medicinal chemistry, Jan-05, Volume: 39, Issue:1
New sigma and 5-HT1A receptor ligands: omega-(tetralin-1-yl)-n-alkylamine derivatives.
AID229211Tested for effective dose of L-745870 required to displace the compound from sigma recognition site after oral administration2001Journal of medicinal chemistry, Feb-15, Volume: 44, Issue:4
Current and novel approaches to the drug treatment of schizophrenia.
AID204625Binding affinity against sigma receptor was determined1994Journal of medicinal chemistry, Sep-30, Volume: 37, Issue:20
Antipodal alpha-N-(methyl through decyl)-N-normetazocines (5,9 alpha-dimethyl-2'-hydroxy-6,7-benzomorphans): in vitro and in vivo properties.
AID157582Binding affinity towards PCP (1-(1-phenylcyclohexyl)piperidine) receptor.1994Journal of medicinal chemistry, Jul-22, Volume: 37, Issue:15
Novel 1-phenylcycloalkanecarboxylic acid derivatives are potent and selective sigma 1 ligands.
AID203823Tested for its binding affinity towards sigma-1 site using E3H1-(+)-SKF 10047 as radioligand in rat brain1994Journal of medicinal chemistry, Jul-22, Volume: 37, Issue:15
Novel 1-phenylcycloalkanecarboxylic acid derivatives are potent and selective sigma 1 ligands.
AID157592Binding affinity of compound was tested on Phencyclidine binding assay.1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Novel potent sigma 1 ligands: N-[omega-(tetralin-1-yl)alkyl]piperidine derivatives.
AID203849Tested for its binding affinity towards sigma-2 site using [3H]-DTG as radioligand1994Journal of medicinal chemistry, Jul-22, Volume: 37, Issue:15
Novel 1-phenylcycloalkanecarboxylic acid derivatives are potent and selective sigma 1 ligands.
AID1347169Tertiary RLuc qRT-PCR qHTS assay for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347150Optimization screen NINDS AMC qHTS for Zika virus inhibitors: Linked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508629Cell Viability qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347167Vero cells viability qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347168HepG2 cells viability qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347149Furin counterscreen qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1508627Counterscreen qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: GLuc-NoTag assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1508628Confirmatory qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347155Optimization screen NINDS Rhodamine qHTS for Zika virus inhibitors: Linked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID151584Binding constant for the agonist state was measured for its ability to displace [3H]naloxone from opioid mu 1 receptor buffered homogenate of rat brain membranes1988Journal of medicinal chemistry, Mar, Volume: 31, Issue:3
Structure-activity relationships for drugs binding to the agonist and antagonist states of the primary morphine receptor.
AID151914Binding constant for the antagonist state was measured for its ability to displace [3H]naloxone from opioid mu 1 receptor buffered homogenate of rat brain membranes1988Journal of medicinal chemistry, Mar, Volume: 31, Issue:3
Structure-activity relationships for drugs binding to the agonist and antagonist states of the primary morphine receptor.
AID204777Binding affinity at Sigma receptor type 2 on rat liver membranes receptor by [3H]DTG displacement.1995Journal of medicinal chemistry, Jul-21, Volume: 38, Issue:15
Synthesis and sigma binding properties of 2'-substituted 5,9 alpha-dimethyl-6,7-benzomorphans.
AID1442382Displacement of [3H]DTG from sigma receptor (unknown origin)2017Journal of medicinal chemistry, 04-13, Volume: 60, Issue:7
The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse.
AID23717Partition coefficient (logP)1988Journal of medicinal chemistry, Mar, Volume: 31, Issue:3
Structure-activity relationships for drugs binding to the agonist and antagonist states of the primary morphine receptor.
AID204768Ratio of binding affinities at Sigma receptor type 2 and type 11995Journal of medicinal chemistry, Jul-21, Volume: 38, Issue:15
Synthesis and sigma binding properties of 2'-substituted 5,9 alpha-dimethyl-6,7-benzomorphans.
AID203990Binding affinity towards sigma opioid receptor in guinea pig cerebral homogenate using [3H]DTG as radioligand1991Journal of medicinal chemistry, Mar, Volume: 34, Issue:3
Identification and exploitation of the sigma-opiate pharmacophore.
AID204636Binding affinity measured on Sigma receptor type 1 from guinea pig brain membranes using [3H]pentazocine as radioligand.1995Journal of medicinal chemistry, Jul-21, Volume: 38, Issue:15
Synthesis and sigma binding properties of 2'-substituted 5,9 alpha-dimethyl-6,7-benzomorphans.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347155Optimization screen NINDS Rhodamine qHTS for Zika virus inhibitors: Linked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347169Tertiary RLuc qRT-PCR qHTS assay for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347149Furin counterscreen qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347150Optimization screen NINDS AMC qHTS for Zika virus inhibitors: Linked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347168HepG2 cells viability qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347167Vero cells viability qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1442382Displacement of [3H]DTG from sigma receptor (unknown origin)2017Journal of medicinal chemistry, 04-13, Volume: 60, Issue:7
The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (15)

TimeframeStudies, This Drug (%)All Drugs %
pre-19901 (6.67)18.7374
1990's7 (46.67)18.2507
2000's1 (6.67)29.6817
2010's3 (20.00)24.3611
2020's3 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.54

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.54 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.62 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.54)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Trials0 (0.00%)5.53%
Trials0 (0.00%)5.53%
Reviews1 (16.67%)6.00%
Reviews0 (0.00%)6.00%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Case Studies0 (0.00%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other5 (83.33%)84.16%
Other7 (100.00%)84.16%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]