Page last updated: 2024-12-10

tcn 201

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID4787937
CHEMBL ID2333945
SCHEMBL ID15348918
MeSH IDM0576537

Synonyms (41)

Synonym
852918-02-6
tcn 201
n-[[4-(benzamidocarbamoyl)phenyl]methyl]-3-chloro-4-fluorobenzenesulfonamide
FT-0674825
NCGC00346887-01
QCR-22 ,
n-(4-(2-benzoylhydrazinecarbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide
CHEMBL2333945 ,
tcn201
gtpl7846
n-[[4-[(benzoylamino)carbamoyl]phenyl]methyl]-3-chloro-4-fluorobenzenesulfonamide
tcn-201
smr004703528
MLS006011947
3-chloro-4-fluoro-n-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulfonamide
SCHEMBL15348918
c21h17clfn3o4s
HB0604
AKOS024458007
DTXSID40406547
t-190 ,
n-({4-[2-(benzenecarbonyl)hydrazinecarbonyl]phenyl}methyl)-3-chloro-4-fluorobenzene-1-sulfonamide
67P ,
CS-0006908
HY-13457
tcn-201, >=98% (hplc)
n-(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide
Z31786514
BCP06814
4-[[[(3-chloro-4-fluorophenyl)sulfonyl]amino]methyl]-benzoic acid 2-benzoylhydrazide
HMS3678O03
Q27088946
AS-16496
bdbm50236939
n-[[4-(benzamidocarbamoyl)phenyl]methyl]-3-chloro-4-fluorobenzenesulfonamide.
A863619
EX-A4411
3-chloro-4-fluoro-n-({4-[(phenylformohydrazido)carbonyl]phenyl}methyl)benzene-1-sulfonamide
EN300-72866
3-chloro-4-fluoro-n-[(4-{[2-(phenylcarbonyl)hydrazino]carbonyl}phenyl)methyl]benzenesulfonamide
n-[[4-(benzamidocarbamoyl)phenyl]methyl]-3-chloro-4- fluorobenzenesulfonamide

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (7)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Glutamate receptor ionotropic, NMDA 2DHomo sapiens (human)IC50 (µMol)20.00000.00401.73519.8000AID1512705; AID1512710
Glutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)IC50 (µMol)0.34100.00071.600310.0000AID1441852; AID1542474
Glutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)IC50 (µMol)0.34100.00071.630610.0000AID1441852; AID1542474
Glutamate receptor ionotropic, NMDA 1Homo sapiens (human)IC50 (µMol)0.27300.00101.88779.8000AID1512706; AID730395
Glutamate receptor ionotropic, NMDA 2AHomo sapiens (human)IC50 (µMol)0.21970.00101.99589.8000AID1441854; AID1512703; AID1512707; AID1512711
Glutamate receptor ionotropic, NMDA 2BHomo sapiens (human)IC50 (µMol)15.13650.00401.33259.8000AID1512704; AID1512706; AID1512708; AID730395
Glutamate receptor ionotropic, NMDA 2CHomo sapiens (human)IC50 (µMol)10.00000.00401.86339.8000AID1512709
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (52)

Processvia Protein(s)Taxonomy
startle responseGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
adult locomotory behaviorGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
regulation of sensory perception of painGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
cellular response to L-glutamateGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
long-term synaptic potentiationGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
cellular response to amyloid-betaGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
monoatomic cation transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
visual learningGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of calcium ion transport into cytosolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
propylene metabolic processGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of membrane potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
response to ethanolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein heterotetramerizationGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion homeostasisGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of reactive oxygen species biosynthetic processGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
response to glycineGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
cellular response to amyloid-betaGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
startle responseGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
response to amphetamineGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
learning or memoryGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
memoryGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
visual learningGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
response to xenobiotic stimulusGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
response to woundingGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
sensory perception of painGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
neurogenesisGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
protein catabolic processGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
sleepGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
directional locomotionGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
negative regulation of protein catabolic processGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
dopamine metabolic processGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
serotonin metabolic processGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
positive regulation of apoptotic processGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
response to ethanolGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
activation of cysteine-type endopeptidase activityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
protein localization to postsynaptic membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
long-term synaptic potentiationGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
learning or memoryGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
response to ethanolGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
protein heterotetramerizationGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
negative regulation of dendritic spine maintenanceGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of cysteine-type endopeptidase activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
long-term synaptic potentiationGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
response to woundingGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
directional locomotionGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
negative regulation of protein catabolic processGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
neuromuscular process controlling balanceGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
protein localization to postsynaptic membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
long-term synaptic potentiationGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (17)

Processvia Protein(s)Taxonomy
glutamate-gated receptor activityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
glutamate bindingGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
voltage-gated monoatomic cation channel activityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
amyloid-beta bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calmodulin bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glycine bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glutamate bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein-containing complex bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
signaling receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
ligand-gated monoatomic ion channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
amyloid-beta bindingGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
zinc ion bindingGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
amyloid-beta bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
zinc ion bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glycine bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glutamate bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (25)

Processvia Protein(s)Taxonomy
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
presynaptic active zone membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
hippocampal mossy fiber to CA3 synapseGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
glutamatergic synapseGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
postsynaptic density membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2DHomo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)
cytoplasmGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic vesicleGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
cell surfaceGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
postsynaptic densityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
dendriteGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic cleftGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
terminal boutonGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
dendritic spineGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
synaptic vesicleGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
cell surfaceGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
postsynaptic densityGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
cytoplasmic vesicle membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
presynaptic membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
dendritic spineGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
synaptic membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
glutamatergic synapseGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
postsynaptic density membraneGlutamate receptor ionotropic, NMDA 2AHomo sapiens (human)
cytoplasmGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
lysosomeGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
late endosomeGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
cytoskeletonGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
cell surfaceGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic densityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
synaptic membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic density membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
glutamatergic synapseGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
postsynaptic density membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2CHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (62)

Assay IDTitleYearJournalArticle
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1542474Negative allosteric modulation of recombinant rat GluN1/GluN2A expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at -40 mV holding potential by two-electrode voltage clamp method2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1421240Negative allosteric modulation of GluN1a/GluN2A receptor (unknown origin) expressed in Xenopus laevis oocytes assessed as inhibition of (S)-glutamate/glycine-induced channel current at -70 mV holding potential in presence of 10 uM glycine by two electrode2018European journal of medicinal chemistry, Oct-05, Volume: 158Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1421244Negative allosteric modulation of GluN1a/GluN2A receptor (unknown origin) expressed in Xenopus laevis oocytes assessed as inhibition of (S)-glutamate/glycine-induced channel current at 200 nM at -70 mV holding potential in presence of 1 to 10 uM glycine b2018European journal of medicinal chemistry, Oct-05, Volume: 158Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1421242Negative allosteric modulation of GluN1a/GluN2A receptor (unknown origin) expressed in Xenopus laevis oocytes assessed as inhibition of (S)-glutamate/glycine-induced channel current at 200 nM at -70 mV holding potential in presence of 1 to 3 uM glycine by2018European journal of medicinal chemistry, Oct-05, Volume: 158Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1542464Negative allosteric modulation of recombinant rat GluN1/GluN2C expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at -40 mV holding potential by two-electrode voltage clamp method2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1542463Negative allosteric modulation of recombinant rat GluN1/GluN2C expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 10 uM at -40 mV holding potential by two-electrode voltage clamp method relative to 2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID730395Inhibition of human recombinant GluN1/GluN2B receptor expressed in human osteosarcoma cells after 5 mins by FLIPR/Ca2+ assay2013Journal of medicinal chemistry, Apr-25, Volume: 56, Issue:8
Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers.
AID1512729Selectivity ratio of IC50 for human GluN2D receptor expressed in HEK cells to IC50 for human GluN2A receptor expressed in HEK cells2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1441853Antagonist activity at rat GluN1A/GluN2B receptor expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced channel current at 10 uM at -70 mV holding potential by two electrode voltage clamp method2017European journal of medicinal chemistry, Mar-31, Volume: 129Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1512709Negative allosteric modulation of human GluN2C receptor expressed in xenopus laevis oocytes assessed as reduction in 3 uM glycine-induced channel current at -40 mV holding potential by two electrode voltage clamp method2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512703Negative allosteric modulation of human GluN2A receptor expressed in HEK cells assessed as reduction in glycine/glutamate-induced intracellular calcium flux preincubated for 5 mins followed by glycine/glutamate addition by Fluo-4-AM dye based FLIPR assay2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512704Negative allosteric modulation of human GluN2B receptor expressed in HEK cells assessed as reduction in glycine/glutamate-induced intracellular calcium flux preincubated for 5 mins followed by glycine/glutamate addition by Fluo-4-AM dye based FLIPR assay2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1728424Inhibition of human GluN1a/GluN2A receptor expressed in HEK293T cells assessed as inhibition of glycine-induced ion flux by whole-cell patch clamp method2021European journal of medicinal chemistry, Jan-01, Volume: 209Synthesis of GluN2A-selective NMDA receptor antagonists with an electron-rich aromatic B-ring.
AID1441852Antagonist activity at rat GluN1A/GluN2A receptor expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced channel current at -70 mV holding potential by two electrode voltage clamp method2017European journal of medicinal chemistry, Mar-31, Volume: 129Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1542465Negative allosteric modulation of recombinant rat GluN1/GluN2D expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 10 uM at -40 mV holding potential by two-electrode voltage clamp method relative to 2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1512708Negative allosteric modulation of human GluN2B receptor expressed in xenopus laevis oocytes assessed as reduction in 3 uM glycine-induced channel current at -40 mV holding potential by two electrode voltage clamp method2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1441854Negative allosteric modulation of eGFP-fused human GluN2A receptor expressed in HEK293T cells assessed as inhibition of NMDA-induced channel current at -60 mV holding potential measured for 5 secs every 60 secs in presence of glycine by whole cell patch c2017European journal of medicinal chemistry, Mar-31, Volume: 129Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1512705Negative allosteric modulation of human GluN2D receptor expressed in HEK cells assessed as reduction in glycine/glutamate-induced intracellular calcium flux preincubated for 5 mins followed by glycine/glutamate addition by Fluo-4-AM dye based FLIPR assay2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512711Negative allosteric modulation of human GluN2A receptor expressed in HEK cells assessed as reduction in 3 uM glycine/glutamate-induced intracellular calcium flux preincubated for 10 mins followed by glycine/glutamate addition and measured for 3 mins by Fl2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1421245Negative allosteric modulation of GluN1a/GluN2A receptor (unknown origin) expressed in Xenopus laevis oocytes assessed as inhibition of (S)-glutamate/glycine-induced channel current at 200 nM at -70 mV holding potential in presence of 30 uM glycine by two2018European journal of medicinal chemistry, Oct-05, Volume: 158Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1542467Negative allosteric modulation of recombinant rat GluN1/GluN2C expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 30 uM at -40 mV holding potential by two-electrode voltage clamp method relative to 2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1542471Negative allosteric modulation of recombinant rat GluN1/GluN2C expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 6 uM at -40 mV holding potential by two-electrode voltage clamp method relative to g2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1542470Negative allosteric modulation of recombinant rat GluN1/GluN2D expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 30 uM at -40 mV holding potential by two-electrode voltage clamp method relative to 2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1512728Selectivity ratio of IC50 for human GluN2C receptor expressed in HEK cells to IC50 for human GluN2A receptor expressed in HEK cells2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512706Negative allosteric modulation of human GluN1/GluN2A receptor expressed in xenopus laevis oocytes assessed as reduction in 3 uM glycine-induced channel current by two electrode voltage clamp method2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512707Negative allosteric modulation of human GluN2A receptor expressed in xenopus laevis oocytes assessed as reduction in 3 uM glycine-induced channel current at -40 mV holding potential by two electrode voltage clamp method2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512710Negative allosteric modulation of human GluN2D receptor expressed in xenopus laevis oocytes assessed as reduction in 3 uM glycine-induced channel current at -40 mV holding potential by two electrode voltage clamp method2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1512727Selectivity ratio of IC50 for human GluN2B receptor expressed in HEK cells to IC50 for human GluN2A receptor expressed in HEK cells2019Journal of medicinal chemistry, 01-10, Volume: 62, Issue:1
Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action.
AID1421246Negative allosteric modulation of GluN1a/GluN2B receptor (unknown origin) expressed in Xenopus laevis oocytes assessed as inhibition of (S)-glutamate/glycine-induced channel current at 10 uM at -70 mV holding potential by two electrode voltage clamp based2018European journal of medicinal chemistry, Oct-05, Volume: 158Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201.
AID1542472Negative allosteric modulation of recombinant rat GluN1/GluN2D expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 6 uM at -40 mV holding potential by two-electrode voltage clamp method relative to g2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1542473Negative allosteric modulation of recombinant rat GluN1/GluN2A expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at 6 uM at -40 mV holding potential by two-electrode voltage clamp method relative to g2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1542466Negative allosteric modulation of recombinant rat GluN1/GluN2D expressed in Xenopus laevis oocytes assessed as inhibition of glutamate/glycine-induced current response at -40 mV holding potential by two-electrode voltage clamp method2019ACS medicinal chemistry letters, Mar-14, Volume: 10, Issue:3
Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor.
AID1346647Human GluN2A (Ionotropic glutamate receptors)2012The Journal of neuroscience : the official journal of the Society for Neuroscience, May-02, Volume: 32, Issue:18
Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (30)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's19 (63.33)24.3611
2020's11 (36.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 23.53

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index23.53 (24.57)
Research Supply Index3.43 (2.92)
Research Growth Index4.59 (4.65)
Search Engine Demand Index17.79 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (23.53)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews2 (6.67%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other28 (93.33%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]