Page last updated: 2024-11-08

D-leucine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID439524
CHEMBL ID1232258
CHEBI ID28225
SCHEMBL ID42012

Synonyms (61)

Synonym
CHEMBL1232258
AKOS015841823
d-leucin
(r)-leucine
CHEBI:28225 ,
dle ,
d-leuzin
d-leu
(2r)-2-amino-4-methylpentanoic acid
leucine,d
nsc 77687
ai3-52422
einecs 206-327-7
nsc-77687
leucine, d-
(r)-(-)-leucine
d-leucine ,
C01570
d-2-amino-4-methylvaleric acid
328-38-1
d-leucine, reagentplus(r), 99%
DB01746
NCGC00163335-01
h-d-leu-oh
L0027
(2r)-2-azaniumyl-4-methylpentanoate
NCGC00163335-02
unii-965cod96ya
965cod96ya ,
(r)-2-amino-4-methylvaleric acid
d-2-amino-4-methylpentanoic acid
(r)-2-amino-4-methylpentanoic acid
d-homo-valine
dtxcid4026347
tox21_112049
dtxsid6046347 ,
cas-328-38-1
(2r)-2-amino-4-methyl-pentanoic acid
d-leucineleucine, d-
(r)-4-methyl-2-aminopentanoic acid
(r)-2-amino-4-methyl-pentanoic acid
(d)-leucine
AM81870
SCHEMBL42012
tox21_112049_1
NCGC00013565-03
mfcd00063088
F1905-7150
AC-8658
d-leucine, vetec(tm) reagent grade, 97%
CS-D1369
d-leu42
AS-12286
Q16081973
EN300-56092
d-2-amino-4-methylpentanoic acid;(r)-leucine;h-d-leu-oh
BCP30475
NCGC00163335-03
HY-Y0378
bdbm50463213
Z850973972

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
bacterial metaboliteAny prokaryotic metabolite produced during a metabolic reaction in bacteria.
Saccharomyces cerevisiae metaboliteAny fungal metabolite produced during a metabolic reaction in Baker's yeast (Saccharomyces cerevisiae).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
leucineA branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group.
D-alpha-amino acid
D-alpha-amino acid zwitterionZwitterionic form of a D-alpha-amino acid having an anionic carboxy group and a protonated amino group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (7)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
acetylcholinesteraseHomo sapiens (human)Potency0.21320.002541.796015,848.9004AID1347399
AR proteinHomo sapiens (human)Potency26.83250.000221.22318,912.5098AID743035; AID743063
regulator of G-protein signaling 4Homo sapiens (human)Potency37.68580.531815.435837.6858AID504845
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency10.68220.000214.376460.0339AID720691
lamin isoform A-delta10Homo sapiens (human)Potency0.50120.891312.067628.1838AID1487
Inositol monophosphatase 1Rattus norvegicus (Norway rat)Potency5.01191.000010.475628.1838AID1457
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (33)

Processvia Protein(s)Taxonomy
positive regulation of cytokine production involved in immune responseLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
negative regulation of gene expressionLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
positive regulation of type II interferon productionLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
positive regulation of interleukin-17 productionLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
positive regulation of interleukin-4 productionLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
negative regulation of autophagyLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
response to muscle activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
neutral amino acid transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
isoleucine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-leucine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
methionine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
phenylalanine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
proline transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
tryptophan transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
tyrosine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
valine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
alanine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
cellular response to glucose starvationLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
xenobiotic transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
response to hyperoxiaLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
positive regulation of glial cell proliferationLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
thyroid hormone transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
cellular response to lipopolysaccharideLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
amino acid import across plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
liver regenerationLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
transport across blood-brain barrierLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-histidine transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
cellular response to L-arginineLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-leucine import across plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-tryptophan transmembrane transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
negative regulation of vascular associated smooth muscle cell apoptotic processLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
positive regulation of L-leucine import across plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
amino acid transmembrane transportLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
protein bindingLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
amino acid transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
aromatic amino acid transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
neutral L-amino acid transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-leucine transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-tryptophan transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
antiporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
thyroid hormone transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
peptide antigen bindingLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
L-amino acid transmembrane transporter activityLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (12)

Processvia Protein(s)Taxonomy
lysosomal membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
cytosolLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
basal plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
basolateral plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
apical plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
microvillus membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
intracellular membrane-bounded organelleLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
extracellular exosomeLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
external side of apical plasma membraneLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
amino acid transport complexLarge neutral amino acids transporter small subunit 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (38)

Assay IDTitleYearJournalArticle
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID681113TP_TRANSPORTER: inhibition of L-tryptophan uptake in Xenopus laevis oocytes2001The Journal of biological chemistry, May-18, Volume: 276, Issue:20
Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters.
AID1398359Cis-inhibition of human LAT1 expressed in TREx HEK293 cells at 200 uM assessed as inhibition of [3H]-gabapentin uptake preincubated for 3 mins at 37 degC followed by washing with choline buffer and measured after 3 hrs by scintillation counting analysis r2018Journal of medicinal chemistry, 08-23, Volume: 61, Issue:16
Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1).
AID1398361Trans-stimulation of human LAT1 expressed in TREx HEK293 cells assessed as induction of [3H]-gabapentin efflux at 200 uM after 3 mins by scintillation counting analysis relative to L-phenylalanine2018Journal of medicinal chemistry, 08-23, Volume: 61, Issue:16
Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1).
AID1398360Cis-inhibition of human LAT1 expressed in TREx HEK293 cells at 200 uM assessed as inhibition of [3H]-gabapentin uptake at 200 uM preincubated for 3 mins at 37 degC followed by washing with choline buffer and measured after 3 hrs by scintillation counting 2018Journal of medicinal chemistry, 08-23, Volume: 61, Issue:16
Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1).
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (12)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (8.33)29.6817
2010's5 (41.67)24.3611
2020's6 (50.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 27.09

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index27.09 (24.57)
Research Supply Index2.56 (2.92)
Research Growth Index5.63 (4.65)
Search Engine Demand Index42.09 (26.88)
Search Engine Supply Index3.00 (0.95)

This Compound (27.09)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other12 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]