Page last updated: 2024-12-10

sideroxylin

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

sideroxylin: from Hydrastis canadensis; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

sideroxylin : A monomethoxyflavone that is flavone substituted by a methoxy group at position 7, hydroxy groups at positions 5 and 4' and methyl groups at positions 6 and 8. It has been isolated from Hydrastis canadensis and Eucalyptus species. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

FloraRankFlora DefinitionFamilyFamily Definition
EucalyptusgenusA genus of trees of the Myrtaceae family, native to Australia, that yields gums, oils, and resins which are used as flavoring agents, astringents, and aromatics.[MeSH]MyrtaceaeThe myrtle plant family of the order Myrtales. It includes several aromatic medicinal plants such as EUCALYPTUS.[MeSH]
HydrastisgenusA plant genus of the family RANUNCULACEAE. Members contain BERBERINE.[MeSH]RanunculaceaeThe buttercup plant family of the order RANUNCULALES, class MAGNOLIOPSIDA. The leaves are usually alternate and stalkless. The flowers usually have two to five free sepals and may be radially symmetrical or irregular.[MeSH]
Hydrastis canadensisspecies[no description available]RanunculaceaeThe buttercup plant family of the order RANUNCULALES, class MAGNOLIOPSIDA. The leaves are usually alternate and stalkless. The flowers usually have two to five free sepals and may be radially symmetrical or irregular.[MeSH]

Cross-References

ID SourceID
PubMed CID3083788
CHEMBL ID1819400
CHEBI ID69916
MeSH IDM0561646

Synonyms (18)

Synonym
5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6,8-dimethyl-4h-1-benzopyran-4-one
4h-1-benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6,8-dimethyl-
3122-87-0
sideroxylin
4',5-dihydroxy-7-methoxy-6,8-dimethylflavone
LMPK12111016
5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6,8-dimethylchromen-4-one
CHEMBL1819400
chebi:69916 ,
5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6,8-dimethyl-4h-chromen-4-one
DTXSID00185144
AKOS032948132
Q27138261
FS-9742
HY-N1306
CS-0016710
sideroxyline
bdbm50463335

Research Excerpts

Overview

Sideroxylin is a C-methylated flavone isolated from Callistemon lanceolatus. exerts antimicrobial activity against Staphylococcus aureus.

ExcerptReferenceRelevance
"Sideroxylin is a C-methylated flavone isolated from Callistemon lanceolatus and exerts antimicrobial activity against Staphylococcus aureus. "( Sideroxylin (Callistemon lanceolatus) suppressed cell proliferation and increased apoptosis in ovarian cancer cells accompanied by mitochondrial dysfunction, the generation of reactive oxygen species, and an increase of lipid peroxidation.
Bazer, FW; Jeong, W; Lee, D; Lim, W; Park, S; Song, G, 2018
)
3.37
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
plant metaboliteAny eukaryotic metabolite produced during a metabolic reaction in plants, the kingdom that include flowering plants, conifers and other gymnosperms.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
dihydroxyflavoneAny hydroxyflavone in which two ring hydrogens are replaced by hydroxy substituents.
monomethoxyflavoneAny methoxyflavone with a single methoxy substituent.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (1)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Transcription factor p65Homo sapiens (human)IC50 (µMol)10.00000.00011.89818.8000AID1398545
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (79)

Processvia Protein(s)Taxonomy
positive regulation of interleukin-1 beta productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-6 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-8 productionTranscription factor p65Homo sapiens (human)
positive regulation of amyloid-beta formationTranscription factor p65Homo sapiens (human)
positive regulation of NF-kappaB transcription factor activityTranscription factor p65Homo sapiens (human)
nucleotide-binding oligomerization domain containing 2 signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
liver developmentTranscription factor p65Homo sapiens (human)
hair follicle developmentTranscription factor p65Homo sapiens (human)
defense response to tumor cellTranscription factor p65Homo sapiens (human)
response to ischemiaTranscription factor p65Homo sapiens (human)
acetaldehyde metabolic processTranscription factor p65Homo sapiens (human)
chromatin organizationTranscription factor p65Homo sapiens (human)
DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
inflammatory responseTranscription factor p65Homo sapiens (human)
cellular defense responseTranscription factor p65Homo sapiens (human)
neuropeptide signaling pathwayTranscription factor p65Homo sapiens (human)
canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
positive regulation of cell population proliferationTranscription factor p65Homo sapiens (human)
response to xenobiotic stimulusTranscription factor p65Homo sapiens (human)
animal organ morphogenesisTranscription factor p65Homo sapiens (human)
response to UV-BTranscription factor p65Homo sapiens (human)
positive regulation of vascular endothelial growth factor productionTranscription factor p65Homo sapiens (human)
positive regulation of gene expressionTranscription factor p65Homo sapiens (human)
positive regulation of Schwann cell differentiationTranscription factor p65Homo sapiens (human)
negative regulation of angiogenesisTranscription factor p65Homo sapiens (human)
cytokine-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
protein catabolic processTranscription factor p65Homo sapiens (human)
response to muramyl dipeptideTranscription factor p65Homo sapiens (human)
response to progesteroneTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-12 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-6 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-8 productionTranscription factor p65Homo sapiens (human)
response to insulinTranscription factor p65Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of protein sumoylationTranscription factor p65Homo sapiens (human)
response to cobalaminTranscription factor p65Homo sapiens (human)
toll-like receptor 4 signaling pathwayTranscription factor p65Homo sapiens (human)
intracellular signal transductionTranscription factor p65Homo sapiens (human)
cellular response to hepatocyte growth factor stimulusTranscription factor p65Homo sapiens (human)
response to muscle stretchTranscription factor p65Homo sapiens (human)
non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
vascular endothelial growth factor signaling pathwayTranscription factor p65Homo sapiens (human)
prolactin signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of protein catabolic processTranscription factor p65Homo sapiens (human)
negative regulation of apoptotic processTranscription factor p65Homo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
response to amino acidTranscription factor p65Homo sapiens (human)
negative regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
negative regulation of insulin receptor signaling pathwayTranscription factor p65Homo sapiens (human)
regulation of inflammatory responseTranscription factor p65Homo sapiens (human)
positive regulation of T cell receptor signaling pathwayTranscription factor p65Homo sapiens (human)
positive regulation of NF-kappaB transcription factor activityTranscription factor p65Homo sapiens (human)
response to cAMPTranscription factor p65Homo sapiens (human)
defense response to virusTranscription factor p65Homo sapiens (human)
cellular response to hydrogen peroxideTranscription factor p65Homo sapiens (human)
interleukin-1-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
response to interleukin-1Transcription factor p65Homo sapiens (human)
cellular response to lipopolysaccharideTranscription factor p65Homo sapiens (human)
cellular response to lipoteichoic acidTranscription factor p65Homo sapiens (human)
cellular response to peptidoglycanTranscription factor p65Homo sapiens (human)
cellular response to nicotineTranscription factor p65Homo sapiens (human)
cellular response to interleukin-1Transcription factor p65Homo sapiens (human)
cellular response to interleukin-6Transcription factor p65Homo sapiens (human)
cellular response to tumor necrosis factorTranscription factor p65Homo sapiens (human)
postsynapse to nucleus signaling pathwayTranscription factor p65Homo sapiens (human)
antiviral innate immune responseTranscription factor p65Homo sapiens (human)
negative regulation of non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
positive regulation of non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
negative regulation of miRNA transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of miRNA transcriptionTranscription factor p65Homo sapiens (human)
cellular response to angiotensinTranscription factor p65Homo sapiens (human)
positive regulation of leukocyte adhesion to vascular endothelial cellTranscription factor p65Homo sapiens (human)
positive regulation of miRNA metabolic processTranscription factor p65Homo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathwayTranscription factor p65Homo sapiens (human)
cellular response to stressTranscription factor p65Homo sapiens (human)
response to cytokineTranscription factor p65Homo sapiens (human)
innate immune responseTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (26)

Processvia Protein(s)Taxonomy
transcription cis-regulatory region bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II transcription regulatory region sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II core promoter sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
transcription coactivator bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
DNA bindingTranscription factor p65Homo sapiens (human)
chromatin bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor activityTranscription factor p65Homo sapiens (human)
protein bindingTranscription factor p65Homo sapiens (human)
enzyme bindingTranscription factor p65Homo sapiens (human)
protein kinase bindingTranscription factor p65Homo sapiens (human)
chromatin DNA bindingTranscription factor p65Homo sapiens (human)
ubiquitin protein ligase bindingTranscription factor p65Homo sapiens (human)
peptide bindingTranscription factor p65Homo sapiens (human)
phosphate ion bindingTranscription factor p65Homo sapiens (human)
identical protein bindingTranscription factor p65Homo sapiens (human)
protein homodimerization activityTranscription factor p65Homo sapiens (human)
actinin bindingTranscription factor p65Homo sapiens (human)
histone deacetylase bindingTranscription factor p65Homo sapiens (human)
NF-kappaB bindingTranscription factor p65Homo sapiens (human)
ankyrin repeat bindingTranscription factor p65Homo sapiens (human)
general transcription initiation factor bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor bindingTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
nucleolusTranscription factor p65Homo sapiens (human)
nucleusTranscription factor p65Homo sapiens (human)
glutamatergic synapseTranscription factor p65Homo sapiens (human)
nucleusTranscription factor p65Homo sapiens (human)
nucleoplasmTranscription factor p65Homo sapiens (human)
cytoplasmTranscription factor p65Homo sapiens (human)
cytosolTranscription factor p65Homo sapiens (human)
NF-kappaB p50/p65 complexTranscription factor p65Homo sapiens (human)
NF-kappaB complexTranscription factor p65Homo sapiens (human)
chromatinTranscription factor p65Homo sapiens (human)
transcription regulator complexTranscription factor p65Homo sapiens (human)
cytoplasmTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (15)

Assay IDTitleYearJournalArticle
AID1398543Cytotoxicity against human MDA-MB-435 cells assessed as reduction in cell viability after 72 hrs by CellTiter 96 aqueous one solution assay2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID613442Inhibition of wild type Staphylococcus aureus NCTC8325-4 NorA assessed as time taken to inhibit ethidium bromide efflux by measuring fluorescence at 100 uM relative to control2011Journal of natural products, Jul-22, Volume: 74, Issue:7
Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis).
AID1233711Cytotoxicity against Artemia salina assessed as induction of shrimp mortality incubated for 24 hrs2015Journal of natural products, Jul-24, Volume: 78, Issue:7
An Isoflavone from Leiophyllum buxifolium and Its Antiproliferative Effect.
AID1233713Antiproliferative activity against human MCF7 cells assessed as inhibition of cell proliferation incubated for 72 hrs by SRB assay2015Journal of natural products, Jul-24, Volume: 78, Issue:7
An Isoflavone from Leiophyllum buxifolium and Its Antiproliferative Effect.
AID613443Inhibition of Staphylococcus aureus K1758 NorA mutant assessed as inhibition of ethidium bromide efflux by measuring increase in fluorescence at 100 uM after 20 mins2011Journal of natural products, Jul-22, Volume: 74, Issue:7
Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis).
AID1366141Antibacterial activity against Pseudomonas aeruginosa after 24 hrs by broth microdilution method2017Bioorganic & medicinal chemistry letters, 11-15, Volume: 27, Issue:22
Antibacterial constituents of the plant family Amaryllidaceae.
AID1233712Antiproliferative activity against human MDA-MB-231 cells assessed as inhibition of cell proliferation incubated for 72 hrs by SRB assay2015Journal of natural products, Jul-24, Volume: 78, Issue:7
An Isoflavone from Leiophyllum buxifolium and Its Antiproliferative Effect.
AID1398542Cytotoxicity against human MDA-MB-231 cells assessed as reduction in cell viability after 72 hrs by CellTiter 96 aqueous one solution assay2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID1398546Inhibition of mitochondrial membrane potential in human HT-29 cells after 3 hrs by JC-1 staining based fluorescence assay2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID1398544Cytotoxicity against human OVCAR3 cells assessed as reduction in cell viability after 72 hrs by CellTiter 96 aqueous one solution assay2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID1398545Inhibition of biotinylated consensus sequence binding to NF-kB p65 in human HeLa nuclear extracts after 3 hrs by ELISA2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID1398541Cytotoxicity against human HT-29 cells assessed as reduction in cell viability after 72 hrs by CellTiter 96 aqueous one solution assay2018Bioorganic & medicinal chemistry, 08-15, Volume: 26, Issue:15
Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
AID1366142Antibacterial activity against Shigella flexneri after 24 hrs by broth microdilution method2017Bioorganic & medicinal chemistry letters, 11-15, Volume: 27, Issue:22
Antibacterial constituents of the plant family Amaryllidaceae.
AID1233714Antiproliferative activity against mouse NIH/3T3 cells assessed as inhibition of cell proliferation incubated for 72 hrs by SRB assay2015Journal of natural products, Jul-24, Volume: 78, Issue:7
An Isoflavone from Leiophyllum buxifolium and Its Antiproliferative Effect.
AID1366140Antibacterial activity against Escherichia coli after 24 hrs by broth microdilution method2017Bioorganic & medicinal chemistry letters, 11-15, Volume: 27, Issue:22
Antibacterial constituents of the plant family Amaryllidaceae.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's5 (83.33)24.3611
2020's1 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.63

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.63 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.57 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.63)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (16.67%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (83.33%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]