Page last updated: 2024-12-06
monatepil
Description
Research Excerpts
Clinical Trials
Roles
Classes
Pathways
Study Profile
Bioassays
Related Drugs
Related Conditions
Protein Interactions
Research Growth
Market Indicators
Description
monatepil: structure in first source; RN refers to 1:1 maleate salt (AJ 2615) [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]
Cross-References
ID Source | ID |
---|---|
PubMed CID | 60810 |
CHEMBL ID | 172853 |
CHEBI ID | 177480 |
SCHEMBL ID | 354294 |
MeSH ID | M0185785 |
Synonyms (29)
Synonym |
---|
CHEBI:177480 |
n-(6,11-dihydrobenzo[c][1]benzothiepin-11-yl)-4-[4-(4-luorophenyl)piperazin-1-yl]butanamide |
103377-41-9 |
monatepil [inn] |
monatepil |
n-(6,11-dihydrobenzo[c][1]benzothiepin-11-yl)-4-[4-(4-fluorophenyl)piperazin-1-yl]butanamide |
CHEMBL172853 |
NCGC00183837-01 |
132019-54-6 |
cas-103377-41-9 |
dtxcid6028737 |
dtxsid3048811 , |
tox21_113288 |
n-(6,11-dihydrodibenzo[b,e]thiepin-11-yl)-4-(4-(4-fluorophenyl)piperazin-1-yl)butanamide |
(+/-)-n-(6,11-dihydrodibenzo(b,e)thiepin-11-yl)-4-(p-fluorophenyl)-1-piperazinebutyramide |
1-piperazinebutanamide, n-(6,11-dihydrodibenzo(b,e)thiepin-11-yl)-4-(4-fluorophenyl) |
N4MMI0J7PW , |
monatepil [mi] |
SCHEMBL354294 |
11-[4-[4-(4-fluorophenyl)-1-piperazinyl]butyrylamino]-6,11-dihydrodibenzo[b,e]thiepin |
WFNRNNUZFPVBSM-UHFFFAOYSA-N |
unii-n4mmi0j7pw |
monatepil [who-dd] |
FT-0696995 |
Q6592639 |
aj 2615;aj-2615;aj2615 |
BCP12677 |
1-piperazinebutanamide, n-(6,11-dihydrodibenzo[b,e]thiepin-11-yl)-4-(4-fluorophenyl)- |
4-[4-(4-fluorophenyl)piperazin-1-yl]-n-{9-thiatricyclo[9.4.0.0,pentadeca-1(11),3,5,7,12,14-hexaen-2-yl}butanamide |
Research Excerpts
Overview
Monatepil maleate is an antihypertensive agent with Ca2+-channel antagonistic, alpha1-adrenergic receptor-blocking, and lipid peroxidation inhibitory activity.
Excerpt | Reference | Relevance |
---|---|---|
"Monatepil is a single drug with both calcium antagonist and peripheral alpha 1-antagonist properties." | ( Newer antihypertensive drugs. Gregoire, JR; Sheps, SG, 1995) | 1.01 |
"Monatepil is a new type of calcium antagonist that also has alpha 1-adrenoceptor-blocking activity." | ( Antihypertensive, antiatherosclerotic, and plasma lipid-lowering effects of monatepil, a novel calcium antagonist with alpha 1-adrenoceptor-blocking activity in experimental animals. Miyazaki, M, 1994) | 1.24 |
"Monatepil maleate is an antihypertensive agent with Ca2+-channel antagonistic, alpha1-adrenergic receptor-blocking, and lipid peroxidation inhibitory activity." | ( Effects of monatepil maleate, a new Ca2+ channel antagonist with alpha1-adrenoceptor antagonistic activity, on cholesterol absorption and catabolism in high cholesterol diet-fed rabbits. Fujitani, B; Hosoki, K; Ikeno, A; Kurono, M; Masuda, Y; Minato, H; Sumiya, T; Yasuba, M, 1998) | 1.41 |
Treatment
Excerpt | Reference | Relevance |
---|---|---|
"The treatment with monatepil did not influence food consumption, body weight, physical signs or blood biochemistry." | ( Anti-atherosclerotic and plasma lipid lowering effects of the novel calcium blocker with alpha 1-adrenoceptor antagonistic activity, monatepil, in high cholesterol diet-fed Japanese Macaca fuscata monkeys. Hosoki, K; Ikeno, A; Ishii, K; Miyazaki, M; Okazaki, Y; Okunishi, H, 1994) | 0.81 |
Bioavailability
Excerpt | Reference | Relevance |
---|---|---|
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs." | ( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019) | 0.51 |
Dosage Studied
Excerpt | Relevance | Reference |
---|---|---|
" These results suggested that AJ-2615 has potential as a long-acting (once daily dosage regimen) antihypertensive drug without causing a steep blood pressure fall and tachycardia." | ( Antihypertensive effects of AJ-2615, a new calcium antagonist with alpha 1-adrenergic blocking activity in experimental hypertensive animals. Fukuya, F; Hosoki, K; Ikeno, A; Karasawa, T; Minato, H; Nose, I; Takeyama, K, 1993) | 0.29 |
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]
Drug Classes (1)
Class | Description |
---|---|
dibenzothiepine | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein Targets (30)
Potency Measurements
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
acetylcholinesterase | Homo sapiens (human) | Potency | 17.3768 | 0.0025 | 41.7960 | 15,848.9004 | AID1347398 |
RAR-related orphan receptor gamma | Mus musculus (house mouse) | Potency | 17.2325 | 0.0060 | 38.0041 | 19,952.5996 | AID1159521; AID1159523 |
TDP1 protein | Homo sapiens (human) | Potency | 24.3464 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
GLI family zinc finger 3 | Homo sapiens (human) | Potency | 21.6944 | 0.0007 | 14.5928 | 83.7951 | AID1259369; AID1259392 |
AR protein | Homo sapiens (human) | Potency | 28.3877 | 0.0002 | 21.2231 | 8,912.5098 | AID1259243; AID1259247; AID743035; AID743063 |
nuclear receptor subfamily 1, group I, member 3 | Homo sapiens (human) | Potency | 29.8493 | 0.0010 | 22.6508 | 76.6163 | AID1224838; AID1224893 |
cytochrome P450 family 3 subfamily A polypeptide 4 | Homo sapiens (human) | Potency | 6.9178 | 0.0123 | 7.9835 | 43.2770 | AID1645841 |
EWS/FLI fusion protein | Homo sapiens (human) | Potency | 16.1741 | 0.0013 | 10.1577 | 42.8575 | AID1259252; AID1259253; AID1259255; AID1259256 |
retinoic acid nuclear receptor alpha variant 1 | Homo sapiens (human) | Potency | 25.7565 | 0.0030 | 41.6115 | 22,387.1992 | AID1159552; AID1159553; AID1159555 |
retinoid X nuclear receptor alpha | Homo sapiens (human) | Potency | 9.5205 | 0.0008 | 17.5051 | 59.3239 | AID1159531 |
farnesoid X nuclear receptor | Homo sapiens (human) | Potency | 26.6011 | 0.3758 | 27.4851 | 61.6524 | AID743217 |
estrogen nuclear receptor alpha | Homo sapiens (human) | Potency | 21.1055 | 0.0002 | 29.3054 | 16,493.5996 | AID1259244; AID743069; AID743075; AID743078 |
G | Vesicular stomatitis virus | Potency | 8.7090 | 0.0123 | 8.9648 | 39.8107 | AID1645842 |
cytochrome P450 2D6 | Homo sapiens (human) | Potency | 4.3649 | 0.0010 | 8.3798 | 61.1304 | AID1645840 |
peroxisome proliferator-activated receptor delta | Homo sapiens (human) | Potency | 47.3043 | 0.0010 | 24.5048 | 61.6448 | AID743215 |
peroxisome proliferator activated receptor gamma | Homo sapiens (human) | Potency | 13.3322 | 0.0010 | 19.4141 | 70.9645 | AID743191 |
vitamin D (1,25- dihydroxyvitamin D3) receptor | Homo sapiens (human) | Potency | 23.9145 | 0.0237 | 23.2282 | 63.5986 | AID743223 |
cytochrome P450, family 19, subfamily A, polypeptide 1, isoform CRA_a | Homo sapiens (human) | Potency | 33.4915 | 0.0017 | 23.8393 | 78.1014 | AID743083 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 29.8493 | 0.0016 | 28.0151 | 77.1139 | AID1259385 |
thyroid hormone receptor beta isoform 2 | Rattus norvegicus (Norway rat) | Potency | 9.8648 | 0.0003 | 23.4451 | 159.6830 | AID743065; AID743066; AID743067 |
Voltage-dependent calcium channel gamma-2 subunit | Mus musculus (house mouse) | Potency | 29.8493 | 0.0015 | 57.7890 | 15,848.9004 | AID1259244 |
Interferon beta | Homo sapiens (human) | Potency | 17.5777 | 0.0033 | 9.1582 | 39.8107 | AID1347407; AID1645842 |
HLA class I histocompatibility antigen, B alpha chain | Homo sapiens (human) | Potency | 8.7090 | 0.0123 | 8.9648 | 39.8107 | AID1645842 |
Cellular tumor antigen p53 | Homo sapiens (human) | Potency | 18.8336 | 0.0023 | 19.5956 | 74.0614 | AID651631 |
Glutamate receptor 2 | Rattus norvegicus (Norway rat) | Potency | 29.8493 | 0.0015 | 51.7393 | 15,848.9004 | AID1259244 |
Spike glycoprotein | Severe acute respiratory syndrome-related coronavirus | Potency | 39.8107 | 0.0096 | 10.5250 | 35.4813 | AID1479145 |
Inositol hexakisphosphate kinase 1 | Homo sapiens (human) | Potency | 8.7090 | 0.0123 | 8.9648 | 39.8107 | AID1645842 |
ATPase family AAA domain-containing protein 5 | Homo sapiens (human) | Potency | 26.6032 | 0.0119 | 17.9420 | 71.5630 | AID651632 |
Ataxin-2 | Homo sapiens (human) | Potency | 26.6032 | 0.0119 | 12.2221 | 68.7989 | AID651632 |
cytochrome P450 2C9, partial | Homo sapiens (human) | Potency | 8.7090 | 0.0123 | 8.9648 | 39.8107 | AID1645842 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Biological Processes (185)
Molecular Functions (55)
Ceullar Components (42)
Bioassays (61)
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1347107 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347105 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347098 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1296008 | Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening | 2020 | SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1 | Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. |
AID1347154 | Primary screen GU AMC qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1508630 | Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347160 | Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347095 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347106 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347101 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347082 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1508627 | Counterscreen qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: GLuc-NoTag assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347091 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347099 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347104 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347425 | Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1) | 2019 | The Journal of biological chemistry, 11-15, Volume: 294, Issue:46 | Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. |
AID1347102 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347108 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347407 | qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection | 2020 | ACS chemical biology, 07-17, Volume: 15, Issue:7 | High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle. |
AID1347089 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347084 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Confirmatory Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347103 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1347159 | Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347096 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347083 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347088 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): Viability assay - Alamar blue signal for LCMV Confirmatory Screen | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1508628 | Confirmatory qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347097 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347100 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1346987 | P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347092 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347081 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Confirmatory Screen | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID1347090 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347086 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1346986 | P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1508629 | Cell Viability qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347094 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347093 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347424 | RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1) | 2019 | The Journal of biological chemistry, 11-15, Volume: 294, Issue:46 | Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. |
AID1347087 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Confirmatory Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1079949 | Proposed mechanism(s) of liver damage. [column 'MEC' in source] | |||
AID1079937 | Severe hepatitis, defined as possibly life-threatening liver failure or through clinical observations. Value is number of references indexed. [column 'MASS' in source] | |||
AID1079948 | Times to onset, minimal and maximal, observed in the indexed observations. [column 'DELAI' in source] | |||
AID1079932 | Highest frequency of moderate liver toxicity observed during clinical trials, expressed as a percentage. [column '% BIOL' in source] | |||
AID1079943 | Malignant tumor, proven histopathologically. Value is number of references indexed. [column 'T.MAL' in source] | |||
AID1079940 | Granulomatous liver disease, proven histopathologically. Value is number of references indexed. [column 'GRAN' in source] | |||
AID1079946 | Presence of at least one case with successful reintroduction. [column 'REINT' in source] | |||
AID1079938 | Chronic liver disease either proven histopathologically, or through a chonic elevation of serum amino-transferase activity after 6 months. Value is number of references indexed. [column 'CHRON' in source] | |||
AID1079945 | Animal toxicity known. [column 'TOXIC' in source] | |||
AID1079935 | Cytolytic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is > 5 (see ACUTE). Value is number of references indexed. [column 'CYTOL' in source] | |||
AID1079933 | Acute liver toxicity defined via clinical observations and clear clinical-chemistry results: serum ALT or AST activity > 6 N or serum alkaline phosphatases activity > 1.7 N. This category includes cytolytic, choleostatic and mixed liver toxicity. Value is | |||
AID1079931 | Moderate liver toxicity, defined via clinical-chemistry results: ALT or AST serum activity 6 times the normal upper limit (N) or alkaline phosphatase serum activity of 1.7 N. Value is number of references indexed. [column 'BIOL' in source] | |||
AID1079939 | Cirrhosis, proven histopathologically. Value is number of references indexed. [column 'CIRRH' in source] | |||
AID1079947 | Comments (NB not yet translated). [column 'COMMENTAIRES' in source] | |||
AID1079936 | Choleostatic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is < 2 (see ACUTE). Value is number of references indexed. [column 'CHOLE' in source] | |||
AID1079944 | Benign tumor, proven histopathologically. Value is number of references indexed. [column 'T.BEN' in source] | |||
AID1079934 | Highest frequency of acute liver toxicity observed during clinical trials, expressed as a percentage. [column '% AIGUE' in source] | |||
AID1079942 | Steatosis, proven histopathologically. Value is number of references indexed. [column 'STEAT' in source] | |||
AID1079941 | Liver damage due to vascular disease: peliosis hepatitis, hepatic veno-occlusive disease, Budd-Chiari syndrome. Value is number of references indexed. [column 'VASC' in source] | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Research
Studies (37)
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 27 (72.97) | 18.2507 |
2000's | 1 (2.70) | 29.6817 |
2010's | 3 (8.11) | 24.3611 |
2020's | 6 (16.22) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Market Indicators
Research Demand Index: 22.23
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.
| This Compound (22.23) All Compounds (24.57) |
Study Types
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 2 (5.13%) | 5.53% |
Reviews | 3 (7.69%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 34 (87.18%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |