Page last updated: 2024-12-06

methoxy-morpholinyl-doxorubicin

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

methoxy-morpholinyl-doxorubicin: structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID11969781
CHEMBL ID3182961
MeSH IDM0183753
PubMed CID65907
CHEMBL ID1232279
CHEBI ID42053
SCHEMBL ID24646
MeSH IDM0183753

Synonyms (47)

Synonym
NCGC00319019-01
tox21_113985
dtxsid6057619 ,
dtxcid7031408
cas-108852-90-0
CHEMBL3182961
5,12-naphthacenedione, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-10-[[2,3,6-trideoxy-3-[(2s)-2-methoxy-4-morpholinyl]-a-llyxo- hexopyranosyl]oxy]-, (8s,10s)-
(9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[5-hydroxy-4-(2-methoxymorpholin-4-yl)-6-methyloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione
CHEMBL1232279
pnu-152243
nemorubicin
fce-23762
methoxymorpholinodx
3'-deamino-3'-(2(s)-methoxy-4-morpholinyl)doxorubicin
pnu 152243
methoxymorpholinyl-doxorubicin
methoxy-morpholinyl-doxorubicin
fce 23762
methoxymorpholino-doxorubicin
(1s,3s)-3-glycoloyl-1,2,3,4,6,11-hexahydro-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1-naphthacenyl 2,3,6-trideoxy-3-((s)-2-methoxymorpholino)-alpha-l-lyxo-hexopyranoside
methoxymorpholinyl doxorubicin
3'-deamino-3'-(2-methoxymorpholin-4-yl)doxorubicin
108852-90-0
(1s,3s)-3,5,12-trihydroxy-3-(hydroxyacetyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 2,3,6-trideoxy-3-[(2s)-2-methoxymorpholin-4-yl]-alpha-l-lyxo-hexopyranoside
CHEBI:42053 ,
3'-desamino-3'-(2-methoxy-4-morpholinyl)-doxorubicin
5,12-naphthacenedione, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-10-((2,3,6-trideoxy-3-(2-methoxy-4-morpholinyl)-alpha-l-lyxo-hexopyranosyl)oxy)-, (8s-cis)-
unii-7618o47bqm
nemorubicin [inn]
7618o47bqm ,
nemorubicin [who-dd]
(1s,3s)-3-glycoloyl-1,2,3,4,6,11-hexahydro-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1-naphthacenyl 2,3,6-trideoxy-3-((s)-2-methoxymorpholino)-.alpha.-l-lyxo-hexopyranoside
5,12-naphthacenedione, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-10-((2,3,6-trideoxy-3-((2s)-2-methoxy-4-morpholinyl)-.alpha.-l-lyxo-hexopyranosyl)oxy)-, (8s,10s)-
HY-15794
CS-2020
SCHEMBL24646
AKOS030526068
Q27120450
AMY10326
A14363
pnu-152243a
(8s,10s)-6,8,11-trihydroxy-10-(((2r,4s,5s,6s)-5-hydroxy-4-((s)-2-methoxymorpholino)-6-methyltetrahydro-2h-pyran-2-yl)oxy)-8-(2-hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione
A855698
F84993
MS-30933
pnu152243a
BP-29358

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" We determined in vitro the toxic concentration of a 1-h period of exposure to doxorubicin (DX), MMDX, and bioactivated MMDX on hematopoietic progenitors and tumor cell lines."( Hematotoxicity on human bone marrow- and umbilical cord blood-derived progenitor cells and in vitro therapeutic index of methoxymorpholinyldoxorubicin and its metabolites.
Bosshard, G; Cavalli, F; Colli, E; D'Incalci, M; Geroni, C; Ghielmini, M; Pennella, G; Sessa, C; Torri, V, 1998
)
0.3
"BM cells proved to be twice as sensitive as hCB cells to cytotoxics, and MMDX was twice as toxic as DX against hCB cells; MMDX activated with normal rat-liver microsomes and with dexamethasone-induced rat microsomes were, respectively, 70 and 230 times more toxic than MMDX."( Hematotoxicity on human bone marrow- and umbilical cord blood-derived progenitor cells and in vitro therapeutic index of methoxymorpholinyldoxorubicin and its metabolites.
Bosshard, G; Cavalli, F; Colli, E; D'Incalci, M; Geroni, C; Ghielmini, M; Pennella, G; Sessa, C; Torri, V, 1998
)
0.3

Pharmacokinetics

ExcerptReferenceRelevance
" Pharmacokinetic parameters showed a rapid clearance of MMRDX from the circulation by an extensive tissue distribution."( A prolonged methoxymorpholino doxorubicin (PNU-152243 or MMRDX) infusion schedule in patients with solid tumours: a phase 1 and pharmacokinetic study.
de Vries, EG; Fokkema, E; Groen, HJ; Spinelli, R; Uges, DR; Valota, O; van Oosterom, AT; Verweij, J, 2000
)
0.31

Dosage Studied

ExcerptRelevanceReference
") MMRDX AUC0-infinity calculated up to 24 h after dosing was 20."( Broad phase II and pharmacokinetic study of methoxy-morpholino doxorubicin (FCE 23762-MMRDX) in non-small-cell lung cancer, renal cancer and other solid tumour patients.
Bakker, M; de Vries, EG; Domenigoni, L; Droz, JP; Groen, HJ; Hanauske, AR; Pacciarini, MA; Pianezzola, E; van Oosterom, AT; van Weissenbruch, F; Verweij, J, 1998
)
0.3
" The increase in lifespan (ILS) following A-NK cell delivery of 53 microg kg(-1) MMDX, a dosage that is ineffective when administered in free form, was similar to that observed in response to 92 microg kg(-1) free drug, a dosage close to the 10% lethal dose (ILS 42% vs."( Delivery of methoxymorpholinyl doxorubicin by interleukin 2-activated NK cells: effect in mice bearing hepatic metastases.
Amboldi, N; Ballinari, D; Collavo, D; Quintieri, L; Rosato, A; Vizler, C; Zanovello, P, 1999
)
0.3
"We conducted a clinical evaluation of FCE 23762, a methoxymorpholino analog of doxorubicin, in 48 dogs with metastatic, nonresectable, or chemotherapy-resistant spontaneous malignancies at an initial dosage of 50-60 microg/kg IV every 3 weeks."( Clinical evaluation of methoximorpholino-doxorubicin (FCE 23762) in dogs with spontaneous malignancies.
Couto, CG; Essinger, C; Nicol, SJ; Sheafor, SE; Ward, H,
)
0.13
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (4)

ClassDescription
morpholinesAny compound containing morpholine as part of its structure.
anthracycline antibioticAn organic compound that has a tetrahydronaphthacenedione ring structure attached by a glycosidic linkage to the amino sugar daunosamine and which exhibits antibiotic activity.
primary alpha-hydroxy ketoneAn alpha-hydroxy ketone in which the carbonyl group and the hydroxy group are linked by a -CH2 (methylene) group.
tertiary alpha-hydroxy ketoneAn alpha-hydroxy ketone in which the carbonyl group and the hydroxy group are linked by a carbon bearing two organyl groups.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (38)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency19.49710.007215.758889.3584AID1224835
acetylcholinesteraseHomo sapiens (human)Potency18.05550.002541.796015,848.9004AID1347395; AID1347397; AID1347398
hypoxia-inducible factor 1 alpha subunitHomo sapiens (human)Potency13.43073.189029.884159.4836AID1224846; AID1224894
RAR-related orphan receptor gammaMus musculus (house mouse)Potency0.22410.006038.004119,952.5996AID1159521; AID1159523
SMAD family member 2Homo sapiens (human)Potency3.37800.173734.304761.8120AID1346859
PPM1D proteinHomo sapiens (human)Potency0.09300.00529.466132.9993AID1347411
SMAD family member 3Homo sapiens (human)Potency3.37800.173734.304761.8120AID1346859
GLI family zinc finger 3Homo sapiens (human)Potency0.00570.000714.592883.7951AID1259369; AID1259392
AR proteinHomo sapiens (human)Potency0.11880.000221.22318,912.5098AID1259243; AID1259247
caspase 7, apoptosis-related cysteine proteaseHomo sapiens (human)Potency1.33330.013326.981070.7614AID1346978
estrogen receptor 2 (ER beta)Homo sapiens (human)Potency0.16790.000657.913322,387.1992AID1259378
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency0.02820.001022.650876.6163AID1224838; AID1224893
progesterone receptorHomo sapiens (human)Potency0.23710.000417.946075.1148AID1346795
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency2.75400.01237.983543.2770AID1645841
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency0.11020.003041.611522,387.1992AID1159552; AID1159553; AID1159555
retinoid X nuclear receptor alphaHomo sapiens (human)Potency0.13230.000817.505159.3239AID1159527; AID1159531
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency0.26600.001530.607315,848.9004AID1224841; AID1224842; AID1259401
farnesoid X nuclear receptorHomo sapiens (human)Potency0.23710.375827.485161.6524AID743217
estrogen nuclear receptor alphaHomo sapiens (human)Potency0.13650.000229.305416,493.5996AID1259244; AID1259248
GVesicular stomatitis virusPotency3.46710.01238.964839.8107AID1645842
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency0.21130.001024.504861.6448AID743215
peroxisome proliferator activated receptor gammaHomo sapiens (human)Potency0.10590.001019.414170.9645AID743191
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency0.07560.023723.228263.5986AID743223
caspase-3Homo sapiens (human)Potency1.33330.013326.981070.7614AID1346978
activating transcription factor 6Homo sapiens (human)Potency0.53540.143427.612159.8106AID1159516
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency0.33780.057821.109761.2679AID1159526
Histone H2A.xCricetulus griseus (Chinese hamster)Potency21.98160.039147.5451146.8240AID1224845; AID1224896
Caspase-7Cricetulus griseus (Chinese hamster)Potency0.16790.006723.496068.5896AID1346980
caspase-3Cricetulus griseus (Chinese hamster)Potency0.16790.006723.496068.5896AID1346980
histone deacetylase 9 isoform 3Homo sapiens (human)Potency28.22630.037617.082361.1927AID1259364; AID1259388
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency0.32090.000627.21521,122.0200AID743202; AID743219
Voltage-dependent calcium channel gamma-2 subunitMus musculus (house mouse)Potency0.14960.001557.789015,848.9004AID1259244
Interferon betaHomo sapiens (human)Potency1.34270.00339.158239.8107AID1347407; AID1347411; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency3.46710.01238.964839.8107AID1645842
Glutamate receptor 2Rattus norvegicus (Norway rat)Potency0.14960.001551.739315,848.9004AID1259244
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency0.09610.009610.525035.4813AID1479148
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency3.46710.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency3.46710.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (45)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (18)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (23)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneGlutamate receptor 2Rattus norvegicus (Norway rat)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (57)

Assay IDTitleYearJournalArticle
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347415qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: tertiary screen by RT-qPCR2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347412qHTS assay to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: Counter screen cell viability and HiBit confirmation2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347414qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: Secondary screen by immunofluorescence2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1726679Cytotoxicity against human HeLa cells2021RSC medicinal chemistry, Mar-26, Volume: 12, Issue:5
Synthesis and evaluation of bis(imino)anthracene derivatives as G-quadruplex ligands.
AID459219Binding affinity to d(CGTACG)2 assessed as average residence time2010Bioorganic & medicinal chemistry, Feb-15, Volume: 18, Issue:4
Interaction between double helix DNA fragments and the new antitumor agent sabarubicin, Men10755.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (52)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's23 (44.23)18.2507
2000's12 (23.08)29.6817
2010's4 (7.69)24.3611
2020's13 (25.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 11.00

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index11.00 (24.57)
Research Supply Index4.04 (2.92)
Research Growth Index5.04 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (11.00)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Trials6 (12.00%)5.53%
Reviews0 (0.00%)6.00%
Reviews2 (4.00%)6.00%
Case Studies0 (0.00%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other8 (100.00%)84.16%
Other42 (84.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]