Page last updated: 2024-11-12

cnv1014802

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

vixotrigine: a sodium channel blocker [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID16046068
CHEMBL ID3544913
SCHEMBL ID310473
MeSH IDM000598720

Synonyms (55)

Synonym
SCHEMBL310473
(5r)-5-(4-{[(2-fluorophenyl)methyl]oxy}phenyl)-l-prolinamide
(5r)-5-(4-[2-fluorobenzyloxy]phenyl)-l-prolinamide
JESCETIFNOFKEU-SJORKVTESA-N
biib 074,vixotrigine
gsk2
(2s,5r)-5-(4-(2-fluorobenzyloxy)phenyl)pyrrolidine-2-carboxamide
vixotrigine [usan]
unii-qqs4j85k6y
vixotrigine
gsk-1014802
cnv-1014802
gsk1014802
raxatrigine
raxatrigine [usan]
cnv 1014802
2-pyrrolidinecarboxamide, 5-(4-((2-fluorophenyl)methoxy)phenyl)-, (2s,5r)-
gsk 1014802
biib 074
biib074
qqs4j85k6y ,
cnv1014802 ,
934240-30-9
AC-31665
HY-12796
(2s,5r)-5-(4-((2-fluorobenzyl)oxy)phenyl)pyrrolidine-2-carboxamide
CHEMBL3544913
vixotrigine [inn]
(2s,5r)-5-(4-((2-fluorophenyl)methoxy)phenyl)pyrrolidine-2-carboxamide
vixotrigine [who-dd]
biib-074
AKOS027324140
bdbm50505255
NCGC00386656-01
DB11706
raxatrigine (gsk1014802)
934240-30-9 (free base).
gtpl12645
raxatrigine (deleted inn)
compound 20 [pmid: 32945812]
cnv1014802; gsk-1014802; raxatrigine
EX-A2232
Q18386159
gsk-1014802;cnv1014802
2-pyrrolidinecarboxamide, 5-[4-[(2-fluorophenyl)methoxy]phenyl]-, (2s,5r)-
(2s,5r)-5-[4-[(2-fluorophenyl)methoxy]phenyl]pyrrolidine-2-carboxamide
N11408
vixotrigine (usan/inn)
D11179
(5r)-5-{4-[(2-fluorobenzyl)oxy]phenyl}-l-prolinamide;cnv1014802
A857124
AS-56210
DTXSID901031867
(2~{s},5~{r})-5-[4-[(2-fluorophenyl)methoxy]phenyl]pyrrolidine-2-carboxamide
TB4 ,

Research Excerpts

Overview

CNV1014802 is a novel sodium channel blocker that is being assessed in the treatment of trigeminal neuralgia.

ExcerptReferenceRelevance
"CNV1014802 is a novel sodium channel blocker that is being assessed in the treatment of trigeminal neuralgia."( Novel design for a phase IIa placebo-controlled, double-blind randomized withdrawal study to evaluate the safety and efficacy of CNV1014802 in patients with trigeminal neuralgia.
Ettlin, DA; Giblin, GM; Gunn, K; Morisset, V; Obermann, M; Palmer, J; Tate, S; Zakrzewska, JM, 2013
)
1.32

Toxicity

ExcerptReferenceRelevance
" Safety and adverse event endpoints are described."( Novel design for a phase IIa placebo-controlled, double-blind randomized withdrawal study to evaluate the safety and efficacy of CNV1014802 in patients with trigeminal neuralgia.
Ettlin, DA; Giblin, GM; Gunn, K; Morisset, V; Obermann, M; Palmer, J; Tate, S; Zakrzewska, JM, 2013
)
0.59
" BIIB074 was well tolerated, with similar adverse events in the double-blind phase to placebo."( Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial.
Bendtsen, L; Cruccu, G; Derjean, D; Estacion, M; Ettlin, DA; Giblin, GM; Gunn, K; Layton, G; Morisset, V; Obermann, M; Palmer, J; Tate, S; Waxman, SG; Zakrzewska, JM, 2017
)
0.46

Pharmacokinetics

ExcerptReferenceRelevance
" Serial blood samples were collected for pharmacokinetic analysis."( Evaluation of the Potential Pharmacokinetic Interactions Between Vixotrigine and an Oral Contraceptive.
Christmann, R; Naik, H; Tidemann-Miller, B; Versavel, M; Zhao, Y, 2020
)
0.56
"The objective of this work was to develop a population pharmacokinetic model and assess effects of various covariates on pharmacokinetic parameters of vixotrigine."( Population Pharmacokinetics of Vixotrigine in Healthy Volunteers and Subjects with Trigeminal Neuralgia, Painful Lumbosacral Radiculopathy and Erythromelalgia.
Bockbrader, H; Chapel, S; Cleall, S; Forrestal, F; Naik, H; Zhao, Y, 2021
)
0.62
" One- and two-compartment pharmacokinetic models were evaluated as base structural pharmacokinetic models."( Population Pharmacokinetics of Vixotrigine in Healthy Volunteers and Subjects with Trigeminal Neuralgia, Painful Lumbosacral Radiculopathy and Erythromelalgia.
Bockbrader, H; Chapel, S; Cleall, S; Forrestal, F; Naik, H; Zhao, Y, 2021
)
0.62
"A total of 10,263 pharmacokinetic samples collected from 465 subjects were included in the analyses."( Population Pharmacokinetics of Vixotrigine in Healthy Volunteers and Subjects with Trigeminal Neuralgia, Painful Lumbosacral Radiculopathy and Erythromelalgia.
Bockbrader, H; Chapel, S; Cleall, S; Forrestal, F; Naik, H; Zhao, Y, 2021
)
0.62
" A mixed-effects model was used to analyze the effect of valproic acid on the natural log-transformed pharmacokinetic parameters of vixotrigine and its metabolites including maximum concentration and area under the concentration-time curve from time zero to infinity."( Evaluation of the Effect of Uridine Diphosphate-Glucuronosyltransferases (UGT) Inhibition by Valproic Acid on Vixotrigine Pharmacokinetics in Healthy Volunteers.
Finnigan, H; Kotecha, M; Naik, H; Serenko, M; Zhao, Y, 2022
)
0.72

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
" The final model included covariates of age, weight and carbamazepine co-administration on clearance, weight on central volume of distribution, food on absorption rate constant and formulation and Japanese race on bioavailability."( Population Pharmacokinetics of Vixotrigine in Healthy Volunteers and Subjects with Trigeminal Neuralgia, Painful Lumbosacral Radiculopathy and Erythromelalgia.
Bockbrader, H; Chapel, S; Cleall, S; Forrestal, F; Naik, H; Zhao, Y, 2021
)
0.62

Dosage Studied

ExcerptRelevanceReference
" Each dosing period was preceded by 1 inpatient visit and 1 outpatient baseline visit."( Effects of a State- and Use-Dependent Nav1.7 Channel Blocker on Ambulatory Blood Pressure: A Randomized, Controlled Crossover Study.
Ballow, CH; Fong, R; Naik, H; Palmer, J; Steiner, D; White, WB, 2019
)
0.51
" When sodium channel blockers cannot reach full dosage because of side effects, an add-on treatment with lamotrigine or baclofen should be considered."( Current and Innovative Pharmacological Options to Treat Typical and Atypical Trigeminal Neuralgia.
Cruccu, G; Di Stefano, G; Truini, A, 2018
)
0.48
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (9)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
cytochrome P450 2D6Homo sapiens (human)Potency15.09160.00108.379861.1304AID1645840
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Sodium channel protein type 1 subunit alphaHomo sapiens (human)IC50 (µMol)22.00000.00232.82969.0000AID1525388
Sodium channel protein type 4 subunit alphaHomo sapiens (human)IC50 (µMol)10.00000.00013.507510.0000AID1525391
Sodium channel protein type 7 subunit alphaHomo sapiens (human)IC50 (µMol)32.00000.03603.73359.0000AID1525384
Sodium channel protein type 5 subunit alphaHomo sapiens (human)IC50 (µMol)84.00000.00033.64849.2000AID1525392
Sodium channel protein type 2 subunit alphaHomo sapiens (human)IC50 (µMol)13.00000.00003.740110.0000AID1525389
Sodium channel protein type 3 subunit alphaHomo sapiens (human)IC50 (µMol)23.00000.00532.80859.0000AID1525390
Sodium channel protein type 8 subunit alphaHomo sapiens (human)IC50 (µMol)15.00000.00113.47059.0000AID1525393
Sodium channel protein type 10 subunit alphaHomo sapiens (human)IC50 (µMol)6.00000.00803.17529.0000AID1525394
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (65)

Processvia Protein(s)Taxonomy
sodium ion transportSodium channel protein type 1 subunit alphaHomo sapiens (human)
adult walking behaviorSodium channel protein type 1 subunit alphaHomo sapiens (human)
determination of adult lifespanSodium channel protein type 1 subunit alphaHomo sapiens (human)
neuronal action potential propagationSodium channel protein type 1 subunit alphaHomo sapiens (human)
neuronal action potentialSodium channel protein type 1 subunit alphaHomo sapiens (human)
nerve developmentSodium channel protein type 1 subunit alphaHomo sapiens (human)
neuromuscular process controlling postureSodium channel protein type 1 subunit alphaHomo sapiens (human)
detection of mechanical stimulus involved in sensory perception of painSodium channel protein type 1 subunit alphaHomo sapiens (human)
establishment of localization in cellSodium channel protein type 1 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 1 subunit alphaHomo sapiens (human)
membrane depolarization during action potentialSodium channel protein type 1 subunit alphaHomo sapiens (human)
regulation of presynaptic membrane potentialSodium channel protein type 1 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 1 subunit alphaHomo sapiens (human)
sodium ion transportSodium channel protein type 4 subunit alphaHomo sapiens (human)
muscle contractionSodium channel protein type 4 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 4 subunit alphaHomo sapiens (human)
regulation of skeletal muscle contraction by action potentialSodium channel protein type 4 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 4 subunit alphaHomo sapiens (human)
osmosensory signaling pathwaySodium channel protein type 7 subunit alphaHomo sapiens (human)
response to bacteriumSodium channel protein type 7 subunit alphaHomo sapiens (human)
cellular homeostasisSodium channel protein type 7 subunit alphaHomo sapiens (human)
sodium ion homeostasisSodium channel protein type 7 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 7 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 7 subunit alphaHomo sapiens (human)
regulation of heart rateSodium channel protein type 5 subunit alphaHomo sapiens (human)
cardiac conduction system developmentSodium channel protein type 5 subunit alphaHomo sapiens (human)
cardiac ventricle developmentSodium channel protein type 5 subunit alphaHomo sapiens (human)
brainstem developmentSodium channel protein type 5 subunit alphaHomo sapiens (human)
sodium ion transportSodium channel protein type 5 subunit alphaHomo sapiens (human)
positive regulation of sodium ion transportSodium channel protein type 5 subunit alphaHomo sapiens (human)
response to denervation involved in regulation of muscle adaptationSodium channel protein type 5 subunit alphaHomo sapiens (human)
telencephalon developmentSodium channel protein type 5 subunit alphaHomo sapiens (human)
cerebellum developmentSodium channel protein type 5 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 5 subunit alphaHomo sapiens (human)
odontogenesis of dentin-containing toothSodium channel protein type 5 subunit alphaHomo sapiens (human)
positive regulation of action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
positive regulation of epithelial cell proliferationSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarizationSodium channel protein type 5 subunit alphaHomo sapiens (human)
cardiac muscle contractionSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of ventricular cardiac muscle cell membrane repolarizationSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of atrial cardiac muscle cell membrane depolarizationSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of atrial cardiac muscle cell membrane repolarizationSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of ventricular cardiac muscle cell membrane depolarizationSodium channel protein type 5 subunit alphaHomo sapiens (human)
cellular response to calcium ionSodium channel protein type 5 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of cardiac muscle cell contractionSodium channel protein type 5 subunit alphaHomo sapiens (human)
ventricular cardiac muscle cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during cardiac muscle cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
atrial cardiac muscle cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
SA node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
AV node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
bundle of His cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during AV node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during SA node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during Purkinje myocyte cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during bundle of His cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
AV node cell to bundle of His cell communicationSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of heart rate by cardiac conductionSodium channel protein type 5 subunit alphaHomo sapiens (human)
membrane depolarization during atrial cardiac muscle cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
regulation of sodium ion transmembrane transportSodium channel protein type 5 subunit alphaHomo sapiens (human)
sodium ion transportSodium channel protein type 2 subunit alphaHomo sapiens (human)
nervous system developmentSodium channel protein type 2 subunit alphaHomo sapiens (human)
intrinsic apoptotic signaling pathway in response to osmotic stressSodium channel protein type 2 subunit alphaHomo sapiens (human)
neuron apoptotic processSodium channel protein type 2 subunit alphaHomo sapiens (human)
memorySodium channel protein type 2 subunit alphaHomo sapiens (human)
determination of adult lifespanSodium channel protein type 2 subunit alphaHomo sapiens (human)
neuronal action potentialSodium channel protein type 2 subunit alphaHomo sapiens (human)
dentate gyrus developmentSodium channel protein type 2 subunit alphaHomo sapiens (human)
nerve developmentSodium channel protein type 2 subunit alphaHomo sapiens (human)
myelinationSodium channel protein type 2 subunit alphaHomo sapiens (human)
cellular response to hypoxiaSodium channel protein type 2 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 2 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 2 subunit alphaHomo sapiens (human)
sodium ion transportSodium channel protein type 3 subunit alphaHomo sapiens (human)
behavioral response to painSodium channel protein type 3 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 3 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 3 subunit alphaHomo sapiens (human)
sodium ion transportSodium channel protein type 8 subunit alphaHomo sapiens (human)
nervous system developmentSodium channel protein type 8 subunit alphaHomo sapiens (human)
peripheral nervous system developmentSodium channel protein type 8 subunit alphaHomo sapiens (human)
neuronal action potentialSodium channel protein type 8 subunit alphaHomo sapiens (human)
optic nerve developmentSodium channel protein type 8 subunit alphaHomo sapiens (human)
myelinationSodium channel protein type 8 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 8 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 8 subunit alphaHomo sapiens (human)
regulation of heart rateSodium channel protein type 10 subunit alphaHomo sapiens (human)
sensory perceptionSodium channel protein type 10 subunit alphaHomo sapiens (human)
regulation of monoatomic ion transmembrane transportSodium channel protein type 10 subunit alphaHomo sapiens (human)
sodium ion transmembrane transportSodium channel protein type 10 subunit alphaHomo sapiens (human)
odontogenesis of dentin-containing toothSodium channel protein type 10 subunit alphaHomo sapiens (human)
regulation of cardiac muscle contractionSodium channel protein type 10 subunit alphaHomo sapiens (human)
regulation of atrial cardiac muscle cell membrane depolarizationSodium channel protein type 10 subunit alphaHomo sapiens (human)
membrane depolarization during action potentialSodium channel protein type 10 subunit alphaHomo sapiens (human)
AV node cell action potentialSodium channel protein type 10 subunit alphaHomo sapiens (human)
bundle of His cell action potentialSodium channel protein type 10 subunit alphaHomo sapiens (human)
regulation of presynaptic membrane potentialSodium channel protein type 10 subunit alphaHomo sapiens (human)
cardiac muscle cell action potential involved in contractionSodium channel protein type 10 subunit alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (22)

Processvia Protein(s)Taxonomy
voltage-gated sodium channel activitySodium channel protein type 1 subunit alphaHomo sapiens (human)
voltage-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialSodium channel protein type 1 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 4 subunit alphaHomo sapiens (human)
protein bindingSodium channel protein type 4 subunit alphaHomo sapiens (human)
sodium channel activitySodium channel protein type 7 subunit alphaHomo sapiens (human)
transmembrane transporter bindingSodium channel protein type 7 subunit alphaHomo sapiens (human)
osmolarity-sensing monoatomic cation channel activitySodium channel protein type 7 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 7 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 5 subunit alphaHomo sapiens (human)
protein bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
calmodulin bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
fibroblast growth factor bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
enzyme bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
protein kinase bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
protein domain specific bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
ankyrin bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
ubiquitin protein ligase bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
transmembrane transporter bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
nitric-oxide synthase bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activity involved in cardiac muscle cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activity involved in AV node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activity involved in bundle of His cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activity involved in Purkinje myocyte action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activity involved in SA node cell action potentialSodium channel protein type 5 subunit alphaHomo sapiens (human)
scaffold protein bindingSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 2 subunit alphaHomo sapiens (human)
protein bindingSodium channel protein type 2 subunit alphaHomo sapiens (human)
calmodulin bindingSodium channel protein type 2 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 3 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 8 subunit alphaHomo sapiens (human)
protein bindingSodium channel protein type 8 subunit alphaHomo sapiens (human)
ATP bindingSodium channel protein type 8 subunit alphaHomo sapiens (human)
sodium ion bindingSodium channel protein type 8 subunit alphaHomo sapiens (human)
voltage-gated sodium channel activitySodium channel protein type 10 subunit alphaHomo sapiens (human)
transmembrane transporter bindingSodium channel protein type 10 subunit alphaHomo sapiens (human)
voltage-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialSodium channel protein type 10 subunit alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (31)

Processvia Protein(s)Taxonomy
plasma membraneSodium channel protein type 1 subunit alphaHomo sapiens (human)
nucleoplasmSodium channel protein type 1 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 1 subunit alphaHomo sapiens (human)
intercalated discSodium channel protein type 1 subunit alphaHomo sapiens (human)
nuclear bodySodium channel protein type 1 subunit alphaHomo sapiens (human)
Z discSodium channel protein type 1 subunit alphaHomo sapiens (human)
T-tubuleSodium channel protein type 1 subunit alphaHomo sapiens (human)
node of RanvierSodium channel protein type 1 subunit alphaHomo sapiens (human)
neuronal cell bodySodium channel protein type 1 subunit alphaHomo sapiens (human)
axon initial segmentSodium channel protein type 1 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 1 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 4 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 4 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 7 subunit alphaHomo sapiens (human)
glial cell projectionSodium channel protein type 7 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 7 subunit alphaHomo sapiens (human)
caveolaSodium channel protein type 5 subunit alphaHomo sapiens (human)
nucleoplasmSodium channel protein type 5 subunit alphaHomo sapiens (human)
nucleolusSodium channel protein type 5 subunit alphaHomo sapiens (human)
endoplasmic reticulumSodium channel protein type 5 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 5 subunit alphaHomo sapiens (human)
caveolaSodium channel protein type 5 subunit alphaHomo sapiens (human)
cell surfaceSodium channel protein type 5 subunit alphaHomo sapiens (human)
intercalated discSodium channel protein type 5 subunit alphaHomo sapiens (human)
membraneSodium channel protein type 5 subunit alphaHomo sapiens (human)
lateral plasma membraneSodium channel protein type 5 subunit alphaHomo sapiens (human)
Z discSodium channel protein type 5 subunit alphaHomo sapiens (human)
T-tubuleSodium channel protein type 5 subunit alphaHomo sapiens (human)
sarcolemmaSodium channel protein type 5 subunit alphaHomo sapiens (human)
perinuclear region of cytoplasmSodium channel protein type 5 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 5 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 2 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 2 subunit alphaHomo sapiens (human)
intercalated discSodium channel protein type 2 subunit alphaHomo sapiens (human)
T-tubuleSodium channel protein type 2 subunit alphaHomo sapiens (human)
axonSodium channel protein type 2 subunit alphaHomo sapiens (human)
node of RanvierSodium channel protein type 2 subunit alphaHomo sapiens (human)
paranode region of axonSodium channel protein type 2 subunit alphaHomo sapiens (human)
presynaptic membraneSodium channel protein type 2 subunit alphaHomo sapiens (human)
glutamatergic synapseSodium channel protein type 2 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 2 subunit alphaHomo sapiens (human)
membraneSodium channel protein type 2 subunit alphaHomo sapiens (human)
sarcoplasmSodium channel protein type 3 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 3 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 8 subunit alphaHomo sapiens (human)
membraneSodium channel protein type 8 subunit alphaHomo sapiens (human)
Z discSodium channel protein type 8 subunit alphaHomo sapiens (human)
cell junctionSodium channel protein type 8 subunit alphaHomo sapiens (human)
axonSodium channel protein type 8 subunit alphaHomo sapiens (human)
cytoplasmic vesicleSodium channel protein type 8 subunit alphaHomo sapiens (human)
node of RanvierSodium channel protein type 8 subunit alphaHomo sapiens (human)
axon initial segmentSodium channel protein type 8 subunit alphaHomo sapiens (human)
presynaptic active zone membraneSodium channel protein type 8 subunit alphaHomo sapiens (human)
parallel fiber to Purkinje cell synapseSodium channel protein type 8 subunit alphaHomo sapiens (human)
postsynaptic density membraneSodium channel protein type 8 subunit alphaHomo sapiens (human)
glutamatergic synapseSodium channel protein type 8 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 8 subunit alphaHomo sapiens (human)
plasma membraneSodium channel protein type 10 subunit alphaHomo sapiens (human)
axonSodium channel protein type 10 subunit alphaHomo sapiens (human)
presynaptic membraneSodium channel protein type 10 subunit alphaHomo sapiens (human)
extracellular exosomeSodium channel protein type 10 subunit alphaHomo sapiens (human)
glutamatergic synapseSodium channel protein type 10 subunit alphaHomo sapiens (human)
voltage-gated sodium channel complexSodium channel protein type 10 subunit alphaHomo sapiens (human)
clathrin complexSodium channel protein type 10 subunit alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (20)

Assay IDTitleYearJournalArticle
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1525399Selectivity index, ratio of IC50 for inhibition of human Nav1.5 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525401Selectivity index, ratio of IC50 for inhibition of human Nav1.8 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525389Inhibition of human Nav1.2 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525394Inhibition of human Nav1.8 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525384Inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525397Selectivity index, ratio of IC50 for inhibition of human Nav1.3 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525395Selectivity index, ratio of IC50 for inhibition of human Nav1.1 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525392Inhibition of human Nav1.5 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525388Inhibition of human Nav1.1 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525396Selectivity index, ratio of IC50 for inhibition of human Nav1.2 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525398Selectivity index, ratio of IC50 for inhibition of human Nav1.4 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525393Inhibition of human Nav1.6 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525400Selectivity index, ratio of IC50 for inhibition of human Nav1.6 expressed in HEK293 cells by electrophysiology assay to IC50 for inhibition of human Nav1.7 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525390Inhibition of human Nav1.3 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
AID1525391Inhibition of human Nav1.4 expressed in HEK293 cells by electrophysiology assay2019Journal of medicinal chemistry, 10-10, Volume: 62, Issue:19
Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (18)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's10 (55.56)24.3611
2020's8 (44.44)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 19.05

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index19.05 (24.57)
Research Supply Index3.18 (2.92)
Research Growth Index4.60 (4.65)
Search Engine Demand Index15.26 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (19.05)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials5 (27.78%)5.53%
Reviews4 (22.22%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other9 (50.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]