Page last updated: 2024-12-11

acanthoic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

acanthoic acid: from root bark of Acanthopanax koreanum; structure given in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

FloraRankFlora DefinitionFamilyFamily Definition
Acanthopanaxgenus[no description available]AraliaceaeThe ginseng plant family of the order Apiales, subclass Rosidae, class Magnoliopsida. Leaves are generally alternate, large, and compound. Flowers are five-parted and arranged in compound flat-topped umbels. The fruit is a berry or (rarely) a drupe (a one-seeded fruit). It is well known for plant preparations used as adaptogens (immune support and anti-fatigue).[MeSH]

Cross-References

ID SourceID
PubMed CID9817887
CHEMBL ID512490
SCHEMBL ID266801
MeSH IDM0262254

Synonyms (8)

Synonym
bdbm50241876
acanthoic acid
CHEMBL512490 ,
(-)-acanthoic acid
SCHEMBL266801
DTXSID50904822
1-phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a,6,7,8,8a,9,10,10a-dodecahydro-1,4a,7-trimethyl-, (1r,4ar,7s,8as,10as)-
AKOS040747755

Research Excerpts

Overview

Athanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) AA has a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, liver protection, gastrointestinal protection, and cardiovascular protection.

ExcerptReferenceRelevance
"Acanthoic acid (AA) is an active substance that is extracted from Croton oblongifolius Roxb., a traditional plant in Thailand. "( Antitumor effect of acanthoic acid against primary effusion lymphoma via inhibition of c-FLIP.
Kariya, R; Kasemsuk, T; Okada, S; Saeeng, R; Sittithumcharee, G, 2021
)
2.39
"Acanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) with a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-diabetes, liver protection, gastrointestinal protection, and cardiovascular protection. "( Acanthoic acid, unique potential pimaradiene diterpene isolated from Acanthopanax koreanum Nakai (Araliaceae): A review on its pharmacology, molecular mechanism, and structural modification.
Cui, ZY; Dou, JY; Jiang, YC; Lian, LH; Nan, JX; Wu, YL, 2022
)
3.61
"Acanthoic acid (AA) is a pimaradiene diterpene isolated from Acanthopanax koreanum Nakai (Araliaceae), with anti-inflammatory and hepatic-protective effects. "( Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner.
Cui, ZY; Dong, XX; Han, X; Hou, LS; Lian, LH; Nan, JX; Piao, HQ; Song, J; Wang, G; Wu, YL; Zheng, S, 2019
)
3.4
"Acanthoic acid (AA) is a pimaradiene diterpene isolated from Acanthopanax koreanum. "( Attenuation of experimental murine colitis by acanthoic acid from Acanthopanax koreanum.
Cai, XF; Kang, OH; Kim, DK; Kim, YH; Lee, YM, 2010
)
2.06
"Acanthoic acid (AA) is a pimaradiene diterpene isolated from the Korean medicinal plant, Acanthopanax koreanum (Araliaceae). "( Inhibition of trypsin-induced mast cell activation by acanthoic acid.
Bae, KH; Cai, XF; Choi, SC; Choi, YA; Kang, CS; Kang, OH; Kim, YH; Lee, YM; Nah, YH; Park, HJ; Song, BS; Yun, KJ, 2006
)
2.02

Actions

ExcerptReferenceRelevance
"Acanthoic acid might inhibit TNF-alpha-mediated IL-8 production by blocking in both the MAPKs and NF-kappaB pathways in HT29 cells."( Acanthoic acid inhibits IL-8 production via MAPKs and NF-kappaB in a TNF-alpha-stimulated human intestinal epithelial cell line.
Bae, KH; Choi, SC; Choi, SJ; Choi, YA; Kang, OH; Kim, DK; Kim, JA; Kim, TH; Kim, YH; Lee, YM; Nah, YH, 2004
)
3.21

Treatment

Aanthoic acid pretreatment (100 mg/kg per day for four consecutive days, p. 4) significantly inhibited the generation of intracellular reactive oxygen species (ROS) and intrace Cellular glutathione (GSH) depletion induced by tBH or CCl.

ExcerptReferenceRelevance
"Acanthoic acid pretreatment (100 mg/kg per day for four consecutive days, p."( Acanthoic acid from Acanthopanax koreanum protects against liver injury induced by tert-butyl hydroperoxide or carbon tetrachloride in vitro and in vivo.
Kim, YH; Lee, JJ; Park, EJ; Sohn, DH; Zhao, YZ, 2004
)
2.49
"Co-treatment with acanthoic acid significantly inhibited the generation of intracellular reactive oxygen species (ROS) and intracellular glutathione (GSH) depletion induced by tBH or CCl (4)."( Acanthoic acid from Acanthopanax koreanum protects against liver injury induced by tert-butyl hydroperoxide or carbon tetrachloride in vitro and in vivo.
Kim, YH; Lee, JJ; Park, EJ; Sohn, DH; Zhao, YZ, 2004
)
2.09
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (2)

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Oxysterols receptor LXR-betaHomo sapiens (human)EC50 (µMol)50.00000.00010.40077.3000AID403100
Oxysterols receptor LXR-alphaHomo sapiens (human)EC50 (µMol)0.18000.00010.63026.7100AID403099
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Oxysterols receptor LXR-betaHomo sapiens (human)LC501.49000.02500.75751.4900AID403097
Oxysterols receptor LXR-alphaHomo sapiens (human)LC500.25000.03500.14250.2500AID403095
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (43)

Processvia Protein(s)Taxonomy
hormone-mediated signaling pathwayOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of macrophage derived foam cell differentiationOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of triglyceride biosynthetic processOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of cholesterol effluxOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of lipid storageOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of cholesterol storageOxysterols receptor LXR-betaHomo sapiens (human)
intracellular receptor signaling pathwayOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of lipid transportOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of cholesterol transportOxysterols receptor LXR-betaHomo sapiens (human)
phosphatidylcholine acyl-chain remodelingOxysterols receptor LXR-betaHomo sapiens (human)
cholesterol homeostasisOxysterols receptor LXR-betaHomo sapiens (human)
mRNA transcription by RNA polymerase IIOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of fatty acid biosynthetic processOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of proteolysisOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of DNA-templated transcriptionOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of DNA-templated transcriptionOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of pinocytosisOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of lipoprotein lipase activityOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of protein metabolic processOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of type II interferon-mediated signaling pathwayOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of high-density lipoprotein particle assemblyOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of pancreatic juice secretionOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of secretion of lysosomal enzymesOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of cold-induced thermogenesisOxysterols receptor LXR-betaHomo sapiens (human)
positive regulation of miRNA transcriptionOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of response to endoplasmic reticulum stressOxysterols receptor LXR-betaHomo sapiens (human)
cell differentiationOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIOxysterols receptor LXR-betaHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIOxysterols receptor LXR-alphaHomo sapiens (human)
hormone-mediated signaling pathwayOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of macrophage derived foam cell differentiationOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of triglyceride biosynthetic processOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of cholesterol effluxOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of cholesterol storageOxysterols receptor LXR-alphaHomo sapiens (human)
intracellular receptor signaling pathwayOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of lipid transportOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of cholesterol transportOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of transporter activityOxysterols receptor LXR-alphaHomo sapiens (human)
response to progesteroneOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of toll-like receptor 4 signaling pathwayOxysterols receptor LXR-alphaHomo sapiens (human)
phosphatidylcholine acyl-chain remodelingOxysterols receptor LXR-alphaHomo sapiens (human)
cholesterol homeostasisOxysterols receptor LXR-alphaHomo sapiens (human)
regulation of circadian rhythmOxysterols receptor LXR-alphaHomo sapiens (human)
mRNA transcription by RNA polymerase IIOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of macrophage activationOxysterols receptor LXR-alphaHomo sapiens (human)
apoptotic cell clearanceOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of fatty acid biosynthetic processOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of proteolysisOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of DNA-templated transcriptionOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of lipid biosynthetic processOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of pinocytosisOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of inflammatory responseOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of lipoprotein lipase activityOxysterols receptor LXR-alphaHomo sapiens (human)
positive regulation of protein metabolic processOxysterols receptor LXR-alphaHomo sapiens (human)
lipid homeostasisOxysterols receptor LXR-alphaHomo sapiens (human)
sterol homeostasisOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of type II interferon-mediated signaling pathwayOxysterols receptor LXR-alphaHomo sapiens (human)
triglyceride homeostasisOxysterols receptor LXR-alphaHomo sapiens (human)
cellular response to lipopolysaccharideOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of pancreatic juice secretionOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of secretion of lysosomal enzymesOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of cold-induced thermogenesisOxysterols receptor LXR-alphaHomo sapiens (human)
negative regulation of response to endoplasmic reticulum stressOxysterols receptor LXR-alphaHomo sapiens (human)
cell differentiationOxysterols receptor LXR-alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (14)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingOxysterols receptor LXR-betaHomo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificOxysterols receptor LXR-betaHomo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificOxysterols receptor LXR-betaHomo sapiens (human)
DNA bindingOxysterols receptor LXR-betaHomo sapiens (human)
protein bindingOxysterols receptor LXR-betaHomo sapiens (human)
zinc ion bindingOxysterols receptor LXR-betaHomo sapiens (human)
chromatin DNA bindingOxysterols receptor LXR-betaHomo sapiens (human)
apolipoprotein A-I receptor bindingOxysterols receptor LXR-betaHomo sapiens (human)
nuclear retinoid X receptor bindingOxysterols receptor LXR-betaHomo sapiens (human)
ATPase bindingOxysterols receptor LXR-betaHomo sapiens (human)
nuclear receptor activityOxysterols receptor LXR-betaHomo sapiens (human)
transcription cis-regulatory region bindingOxysterols receptor LXR-alphaHomo sapiens (human)
transcription cis-regulatory region bindingOxysterols receptor LXR-alphaHomo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificOxysterols receptor LXR-alphaHomo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificOxysterols receptor LXR-alphaHomo sapiens (human)
DNA bindingOxysterols receptor LXR-alphaHomo sapiens (human)
nuclear receptor activityOxysterols receptor LXR-alphaHomo sapiens (human)
protein bindingOxysterols receptor LXR-alphaHomo sapiens (human)
zinc ion bindingOxysterols receptor LXR-alphaHomo sapiens (human)
cholesterol bindingOxysterols receptor LXR-alphaHomo sapiens (human)
chromatin DNA bindingOxysterols receptor LXR-alphaHomo sapiens (human)
sterol response element bindingOxysterols receptor LXR-alphaHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingOxysterols receptor LXR-alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (7)

Processvia Protein(s)Taxonomy
nucleusOxysterols receptor LXR-betaHomo sapiens (human)
nucleoplasmOxysterols receptor LXR-betaHomo sapiens (human)
cytoplasmOxysterols receptor LXR-betaHomo sapiens (human)
cytosolOxysterols receptor LXR-betaHomo sapiens (human)
RNA polymerase II transcription regulator complexOxysterols receptor LXR-betaHomo sapiens (human)
chromatinOxysterols receptor LXR-betaHomo sapiens (human)
nucleusOxysterols receptor LXR-betaHomo sapiens (human)
nucleusOxysterols receptor LXR-alphaHomo sapiens (human)
nucleoplasmOxysterols receptor LXR-alphaHomo sapiens (human)
cytoplasmOxysterols receptor LXR-alphaHomo sapiens (human)
cytosolOxysterols receptor LXR-alphaHomo sapiens (human)
RNA polymerase II transcription regulator complexOxysterols receptor LXR-alphaHomo sapiens (human)
chromatinOxysterols receptor LXR-alphaHomo sapiens (human)
receptor complexOxysterols receptor LXR-alphaHomo sapiens (human)
nucleusOxysterols receptor LXR-alphaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (10)

Assay IDTitleYearJournalArticle
AID403099Agonist activity at human recombinant LXRalpha expressed in Escherichia coli BL21 cells assessed as association of recombinant SRC1 to LXRalpha ligand binding domain by HTRF assay2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
AID1718574Cytotoxicity against human KKU-213 cells assessed as growth inhibition incubated for 48 hrs by MTT assay2021Bioorganic & medicinal chemistry, 01-01, Volume: 29A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells.
AID403095Displacement of [3H2]F3-methyl AA from human recombinant LXRalpha expressed in Escherichia coli BL21 cells2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
AID1718573Cytotoxicity against human KKU-100 cells assessed as growth inhibition incubated for 48 hrs by MTT assay2021Bioorganic & medicinal chemistry, 01-01, Volume: 29A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells.
AID403361Activity of human recombinant LXRalpha ligand binding domain-mediated transcriptional activity in human HEK293 cells with Gal4 reporter plasmid at 100 uM by luciferase reporter assay2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
AID403097Displacement of [3H2]F3-methyl AA from human recombinant LXRbeta expressed in Escherichia coli BL21 cells2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
AID403365Activity of human recombinant LXRbeta ligand binding domain-mediated transcriptional activity in human HEK293 cells with Gal4 reporter plasmid at 100 uM by luciferase reporter assay2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
AID1718575Cytotoxicity against human KKU-214 cells assessed as growth inhibition incubated for 48 hrs by MTT assay2021Bioorganic & medicinal chemistry, 01-01, Volume: 29A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells.
AID1718571Cytotoxicity against human KKU-055 cells assessed as growth inhibition incubated for 48 hrs by MTT assay2021Bioorganic & medicinal chemistry, 01-01, Volume: 29A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells.
AID403100Agonist activity at human recombinant LXRbeta expressed in Escherichia coli BL21 cells assessed as association of recombinant SRC1 to LXRbeta ligand binding domain by HTRF assay2005Journal of natural products, Aug, Volume: 68, Issue:8
Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (31)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's2 (6.45)18.2507
2000's13 (41.94)29.6817
2010's13 (41.94)24.3611
2020's3 (9.68)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 22.13

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index22.13 (24.57)
Research Supply Index3.47 (2.92)
Research Growth Index5.01 (4.65)
Search Engine Demand Index21.17 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (22.13)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (3.23%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other30 (96.77%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]