Lecanoric acid is a depside, a type of lichen secondary metabolite, commonly found in various lichen species. It is a white, crystalline compound with a molecular formula C16H14O7. Lecanoric acid has been shown to exhibit a range of biological activities, including antimicrobial, antioxidant, and anti-inflammatory properties. The compound's synthesis involves the condensation of two molecules of orsellinic acid. Its biological activity is attributed to its phenolic structure, which can interact with various biological targets. Studies on lecanoric acid have focused on its potential therapeutic applications, particularly in the treatment of infections, inflammation, and oxidative stress-related diseases. Researchers investigate lecanoric acid's potential as a natural source of bioactive compounds for drug development.'
lecanoric acid: from a strain of Pyricularia (deuteromycetes); RN given refers to parent cpd; structure [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]
ID Source | ID |
---|---|
PubMed CID | 99613 |
CHEMBL ID | 1451874 |
CHEBI ID | 15871 |
SCHEMBL ID | 3797774 |
MeSH ID | M0051960 |
Synonym |
---|
AC-20266 |
benzoic acid, 2,4-dihydroxy-6-methyl-, 4-carboxy-3-hydroxy-5-methylphenyl ester |
brn 2172778 |
beta-resorcylic acid, 6-methyl-, 4-(6-methyl-beta-resorcylate) |
nsc 249981 |
BRD-K77578964-001-02-8 |
o-orsellinate depside |
CHEBI:15871 , |
2,4-dihydroxy-6-methylbenzoic acid 4-carboxy-3-hydroxy-5-methylphenyl ester |
4-(2,4-dihydroxy-6-methylbenzoyloxy)-2-hydroxy-6-methylbenzoic acid |
nsc249981 |
nsc-249981 |
benzoic acid,4-dihydroxy-6-methyl-, 4-carboxy-3-hydroxy-5-methylphenyl ester |
.beta.-resorcylic acid, 4-(6-methyl-.beta.-resorcylate) |
DIVK1C_006246 |
KBIO1_001190 |
SDCCGMLS-0066390.P001 |
SPECTRUM_000499 |
BSPBIO_001623 |
smr001215955 |
MLS000563107 |
lecanoric acid |
orsellinate depside |
480-56-8 |
C02868 |
NCGC00095468-01 |
KBIO3_001123 |
KBIO2_000979 |
KBIO2_003547 |
KBIO2_006115 |
KBIOGR_002089 |
KBIOSS_000979 |
SPECPLUS_000150 |
SPBIO_000221 |
SPECTRUM3_000162 |
SPECTRUM2_000211 |
SPECTRUM4_001485 |
SPECTRUM200070 |
SPECTRUM5_000189 |
NCGC00095468-02 |
NCGC00095468-03 |
LMPK13080001 |
4-(2,4-dihydroxy-6-methylbenzoyl)oxy-2-hydroxy-6-methylbenzoic acid |
lecanoricacid |
CHEMBL1451874 |
unii-d0m65tks0f |
d0m65tks0f , |
4-10-00-01527 (beilstein handbook reference) |
CCG-38414 |
AKOS015916261 |
SCHEMBL3797774 |
DTXSID60197384 |
SR-01000841840-2 |
sr-01000841840 |
.beta.-resorcylic acid, 6-methyl-, 4-(6-methyl-.beta.-resorcylate) |
Q27098274 |
4-((2,4-dihydroxy-6-methylbenzoyl)oxy)-2-hydroxy-6-methylbenzoic acid |
beta-resorcylic acid, 6-methyl-, 4-(6-methyl-beta-resorcylate) (7ci,8ci); nsc 249981 |
-resorcylic acid, 6-methyl-, 4-(6-methyl--resorcylate) (7ci,8ci); nsc 249981 |
HY-N3394 |
STARBLD0009608 |
CS-0024095 |
Excerpt | Reference | Relevance |
---|---|---|
" decussata and their plasma-related bioavailability were also investigated using LC-ESI-MS/MS." | ( New Insights into the Biological Activity of Lichens: Bioavailable Secondary Metabolites of Umbilicaria decussata as Potential Anticoagulants. Javad Davarpanah, S; Vaez, M, 2021) | 0.62 |
Class | Description |
---|---|
benzoate ester | Esters of benzoic acid or substituted benzoic acids. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 50.1187 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Chain A, HADH2 protein | Homo sapiens (human) | Potency | 39.8107 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain B, HADH2 protein | Homo sapiens (human) | Potency | 39.8107 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain A, Cruzipain | Trypanosoma cruzi | Potency | 0.0126 | 0.0020 | 14.6779 | 39.8107 | AID1476 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 21.3313 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
15-lipoxygenase, partial | Homo sapiens (human) | Potency | 39.8107 | 0.0126 | 10.6917 | 88.5700 | AID887 |
TDP1 protein | Homo sapiens (human) | Potency | 0.0103 | 0.0008 | 11.3822 | 44.6684 | AID686979 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 28.1838 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 9.9150 | 0.0018 | 15.6638 | 39.8107 | AID894 |
mitogen-activated protein kinase 1 | Homo sapiens (human) | Potency | 39.8107 | 0.0398 | 16.7842 | 39.8107 | AID995 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 79.4328 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 11.2202 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
geminin | Homo sapiens (human) | Potency | 0.1300 | 0.0046 | 11.3741 | 33.4983 | AID624297 |
cytochrome P450 3A4 isoform 1 | Homo sapiens (human) | Potency | 12.5893 | 0.0316 | 10.2792 | 39.8107 | AID884; AID885 |
Gamma-aminobutyric acid receptor subunit pi | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit beta-1 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit delta | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit gamma-2 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-5 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-3 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit gamma-1 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-2 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-4 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit gamma-3 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-6 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit alpha-1 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit beta-3 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit beta-2 | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
GABA theta subunit | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
Gamma-aminobutyric acid receptor subunit epsilon | Rattus norvegicus (Norway rat) | Potency | 12.5893 | 1.0000 | 12.2248 | 31.6228 | AID885 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
glycogen synthase kinase-3 alpha | Homo sapiens (human) | AC50 | 27.8000 | 0.0135 | 29.7434 | 171.7000 | AID463203 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Gamma-aminobutyric acid receptor subunit gamma-2 | Rattus norvegicus (Norway rat) |
plasma membrane | Gamma-aminobutyric acid receptor subunit alpha-1 | Rattus norvegicus (Norway rat) |
plasma membrane | Gamma-aminobutyric acid receptor subunit beta-2 | Rattus norvegicus (Norway rat) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID1508630 | Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID977602 | Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM | 2013 | Molecular pharmacology, Jun, Volume: 83, Issue:6 | Structure-based identification of OATP1B1/3 inhibitors. |
AID977599 | Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM | 2013 | Molecular pharmacology, Jun, Volume: 83, Issue:6 | Structure-based identification of OATP1B1/3 inhibitors. |
AID1434780 | Antioxidant activity assessed as DPPH radical scavenging activity at 100 ug/ml after 30 mins | 2017 | Bioorganic & medicinal chemistry letters, 02-15, Volume: 27, Issue:4 | Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. |
AID1434783 | Antifouling activity against Bugula neritina larvae assessed as inhibition of larval settlement at 25 ug/ml after 1 hr by dissecting microscopy relative to control | 2017 | Bioorganic & medicinal chemistry letters, 02-15, Volume: 27, Issue:4 | Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | 2014 | Journal of biomolecular screening, Jul, Volume: 19, Issue:6 | A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | |||
AID1159550 | Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening | 2015 | Nature cell biology, Nov, Volume: 17, Issue:11 | 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. |
AID1159607 | Screen for inhibitors of RMI FANCM (MM2) intereaction | 2016 | Journal of biomolecular screening, Jul, Volume: 21, Issue:6 | A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 1 (3.33) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (13.33) | 29.6817 |
2010's | 17 (56.67) | 24.3611 |
2020's | 8 (26.67) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.
| This Compound (25.82) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 1 (3.13%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 31 (96.88%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |