Page last updated: 2024-12-07

alpha-amyrenone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth

Description

alpha-amyrenone: from Marsdenia officinalis Tsiang [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

FloraRankFlora DefinitionFamilyFamily Definition
MarsdeniagenusA plant genus of the family ASCLEPIADACEAE. Members contain pregnane glycosides (marsdekoiside & marstomentosides, maryal) and hainaneosides (SAPONINS).[MeSH]ApocynaceaeThe dogbane family of the order Gentianales. Members of the family have milky, often poisonous juice, smooth-margined leaves, and flowers in clusters.[MeSH]
Marsdenia officinalisspecies[no description available]ApocynaceaeThe dogbane family of the order Gentianales. Members of the family have milky, often poisonous juice, smooth-margined leaves, and flowers in clusters.[MeSH]

Cross-References

ID SourceID
PubMed CID12306155
CHEMBL ID518475
SCHEMBL ID18821195
MeSH IDM0199751

Synonyms (11)

Synonym
alpha-amyrenone
CHEMBL518475 ,
xll7mh4ojo ,
unii-xll7mh4ojo
alfa-amyrenone
SCHEMBL18821195
Q27293894
(4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydropicen-3-one
bdbm50531261
EX-A6941
AKOS040734610

Research Excerpts

Dosage Studied

ExcerptRelevanceReference
" The mixture of α,β-amyrenone, dosed orally, was able to reduce mechanical hypersensitivity and paw-oedema induced by carrageenan, interfering with neutrophil migration."( Contribution of α,β-Amyrenone to the Anti-Inflammatory and Antihypersensitivity Effects of Aleurites moluccana (L.) Willd.
Bellé Bresolin, TM; Cechinel Filho, V; Claudino, VD; da Silva Machado, M; De Souza, MM; Lucinda-Silva, RM; Malheiros, A; Meyre-Silva, C; Quintão, NL; Reichert, S; Rocha, LW; Silva, GF; Wagner, TM, 2014
)
0.4
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (1)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Prostaglandin G/H synthase 2Homo sapiens (human)IC50 (µMol)40.00000.00010.995010.0000AID1617780
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (59)

Processvia Protein(s)Taxonomy
prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
response to oxidative stressProstaglandin G/H synthase 2Homo sapiens (human)
embryo implantationProstaglandin G/H synthase 2Homo sapiens (human)
learningProstaglandin G/H synthase 2Homo sapiens (human)
memoryProstaglandin G/H synthase 2Homo sapiens (human)
regulation of blood pressureProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell population proliferationProstaglandin G/H synthase 2Homo sapiens (human)
response to xenobiotic stimulusProstaglandin G/H synthase 2Homo sapiens (human)
response to nematodeProstaglandin G/H synthase 2Homo sapiens (human)
response to fructoseProstaglandin G/H synthase 2Homo sapiens (human)
response to manganese ionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vascular endothelial growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cyclooxygenase pathwayProstaglandin G/H synthase 2Homo sapiens (human)
bone mineralizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fever generationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic plasticityProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of synaptic transmission, dopaminergicProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin secretionProstaglandin G/H synthase 2Homo sapiens (human)
response to estradiolProstaglandin G/H synthase 2Homo sapiens (human)
response to lipopolysaccharideProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of peptidyl-serine phosphorylationProstaglandin G/H synthase 2Homo sapiens (human)
response to vitamin DProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to heatProstaglandin G/H synthase 2Homo sapiens (human)
response to tumor necrosis factorProstaglandin G/H synthase 2Homo sapiens (human)
maintenance of blood-brain barrierProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of protein import into nucleusProstaglandin G/H synthase 2Homo sapiens (human)
hair cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of apoptotic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of nitric oxide biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vasoconstrictionProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
decidualizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle cell proliferationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of inflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
response to glucocorticoidProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of calcium ion transportProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicProstaglandin G/H synthase 2Homo sapiens (human)
response to fatty acidProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to mechanical stimulusProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to lead ionProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to ATPProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to hypoxiaProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to non-ionic osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to fluid shear stressProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of transforming growth factor beta productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fibroblast growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of platelet-derived growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cellular oxidant detoxificationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of neuroinflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathway in response to osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to homocysteineProstaglandin G/H synthase 2Homo sapiens (human)
response to angiotensinProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (8)

Processvia Protein(s)Taxonomy
peroxidase activityProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin-endoperoxide synthase activityProstaglandin G/H synthase 2Homo sapiens (human)
protein bindingProstaglandin G/H synthase 2Homo sapiens (human)
enzyme bindingProstaglandin G/H synthase 2Homo sapiens (human)
heme bindingProstaglandin G/H synthase 2Homo sapiens (human)
protein homodimerization activityProstaglandin G/H synthase 2Homo sapiens (human)
metal ion bindingProstaglandin G/H synthase 2Homo sapiens (human)
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygenProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
nuclear inner membraneProstaglandin G/H synthase 2Homo sapiens (human)
nuclear outer membraneProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulumProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum lumenProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum membraneProstaglandin G/H synthase 2Homo sapiens (human)
caveolaProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
protein-containing complexProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (10)

Assay IDTitleYearJournalArticle
AID1617778Inhibition of ovine recombinant COX1 assessed as decrease in formation of PGE2 using arachidonic acid as substrate preincubated for 10 mins followed by substrate addition measured after 45 mins by LC-MS analysis2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID334272Growth inhibition of mouse B16 2F2 cells after 3 days2002Journal of natural products, May, Volume: 65, Issue:5
Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line.
AID1617777Inhibition of human recombinant N-terminal His-tagged 15-LOX2 expressed in Escherichia coli assessed as residual activity at 42 uM using arachidonic acid as substrate preincubated for 5 mins followed by substrate addition measured after 20 mins in dark by2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID334273Induction of melanogenesis in mouse B16 2F2 cells assessed as intracellular melanin content after 3 days2002Journal of natural products, May, Volume: 65, Issue:5
Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line.
AID1617779Inhibition of ovine recombinant COX1 assessed as residual activity at 42 uM using arachidonic acid as substrate preincubated for 10 mins followed by substrate addition measured after 45 mins by LC-MS analysis2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID1617774Inhibition of human recombinant 5-LOX expressed in insect cells assessed as decrease in production of 5-HPETE and 5-HETE using arachidonic acid as substrate preincubated for 5 mins followed by substrate addition measured after 20 mins in dark by ferric io2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID1617781Inhibition of human recombinant COX2 expressed in baculovirus infected sf21 cells assessed as residual activity at 42 uM using arachidonic acid as substrate preincubated for 10 mins followed by substrate addition measured after 45 mins by LC-MS analysis r2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID1617776Inhibition of human recombinant N-terminal His-tagged 15-LOX2 expressed in Escherichia coli using arachidonic acid as substrate preincubated for 5 mins followed by substrate addition measured after 20 mins in dark by ferric ion oxidation-xylenol orange as2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID1617775Inhibition of human recombinant 5-LOX expressed in insect cells assessed residual activity using arachidonic acid at 42 uM as substrate preincubated for 5 mins followed by substrate addition measured after 20 mins in dark by ferric ion oxidation-xylenol o2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
AID1617780Inhibition of human recombinant COX2 expressed in baculovirus infected sf21 cells assessed as decrease in PGE2 formation using arachidonic acid as substrate preincubated for 10 mins followed by substrate addition measured after 45 mins by LC-MS analysis2019Journal of natural products, 12-27, Volume: 82, Issue:12
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's2 (28.57)18.2507
2000's1 (14.29)29.6817
2010's3 (42.86)24.3611
2020's1 (14.29)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other8 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]