Page last updated: 2024-11-09

stf 62247

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

STF 62247: has antineoplastic activity; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID704473
CHEMBL ID565269
CHEBI ID125656
SCHEMBL ID996232
MeSH IDM0524101

Synonyms (46)

Synonym
AKOS002382987
smr000279642
MLS000765936
OPREA1_578909
OPREA1_055220
CHEBI:125656
EC-000.2320
CHEMBL565269
n-(3-methylphenyl)-4-pyridin-4-yl-1,3-thiazol-2-amine
HMS2667I13
STF-62247 ,
stf62247
CCG-19235
n-(3-methylphenyl)-4-(pyridin-4-yl)-1,3-thiazol-2-amine
n-(3-methylphenyl)-4-(4-pyridinyl)-2-thiazolamine
NCGC00344081-02
315702-99-9
S1041
autophagy inducer, stf-62247
n-(3-methylphenyl)-4-(4-pyridinyl)-1,3-thiazol-2-amine
MLS006011714
4-(pyridin-4-yl)-n-(m-tolyl)thiazol-2-amine
SCHEMBL996232
KATNUHQNJGNLPW-UHFFFAOYSA-N
AC-32639
HMS3648C10
n-(3-methylphenyl)-4-pyridin-4-yl-2-thiazolamine
Q27216266
mfcd01121974
sr-01000477178
SR-01000477178-1
HY-100746
DTXSID90351598
HMS3654K09
stf 62247
AS-59343
stf-62247, >=98% (hplc), solid
CS-5950
J-018470
NCGC00344081-04
SW220203-1
FT-0719423
EX-A2421
4-(pyridin-4-yl)-n-m-tolylthiazol-2-amine
SR-01000477178-3
SB52241

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
substituted aniline
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (26)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency19.95265.623417.292931.6228AID485281
LuciferasePhotinus pyralis (common eastern firefly)Potency16.94410.007215.758889.3584AID588342
glp-1 receptor, partialHomo sapiens (human)Potency4.46680.01846.806014.1254AID624417
ATAD5 protein, partialHomo sapiens (human)Potency4.10780.004110.890331.5287AID504467
Fumarate hydrataseHomo sapiens (human)Potency37.22120.00308.794948.0869AID1347053
TDP1 proteinHomo sapiens (human)Potency22.72650.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency8.80060.180013.557439.8107AID1460; AID1468
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency0.19000.01237.983543.2770AID1645841
EWS/FLI fusion proteinHomo sapiens (human)Potency30.56580.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
GVesicular stomatitis virusPotency0.26840.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency0.84870.00108.379861.1304AID1645840
polyproteinZika virusPotency37.22120.00308.794948.0869AID1347053
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency50.11870.035520.977089.1251AID504332
huntingtin isoform 2Homo sapiens (human)Potency22.38720.000618.41981,122.0200AID1688
mitogen-activated protein kinase 1Homo sapiens (human)Potency35.48130.039816.784239.8107AID1454
ras-related protein Rab-9AHomo sapiens (human)Potency3.16230.00022.621531.4954AID485297
urokinase-type plasminogen activator precursorMus musculus (house mouse)Potency7.94330.15855.287912.5893AID540303
plasminogen precursorMus musculus (house mouse)Potency7.94330.15855.287912.5893AID540303
urokinase plasminogen activator surface receptor precursorMus musculus (house mouse)Potency7.94330.15855.287912.5893AID540303
gemininHomo sapiens (human)Potency20.25500.004611.374133.4983AID624296; AID624297
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency17.78280.00419.962528.1838AID2675
Interferon betaHomo sapiens (human)Potency0.26840.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency0.26840.01238.964839.8107AID1645842
TAR DNA-binding protein 43Homo sapiens (human)Potency12.58931.778316.208135.4813AID652104
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency0.26840.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency0.26840.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (63)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (27)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (29)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (70)

Assay IDTitleYearJournalArticle
AID1064302Cytotoxicity against human RCC4 cells after 4 days by XTT assay2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Identifying novel targets in renal cell carcinoma: design and synthesis of affinity chromatography reagents.
AID612855Induction of autophagy in human RCC4 cells assessed as formation of intracytoplasmic vacuoles at 5 uM after 24 hrs by phase contrast microscopy2011Bioorganic & medicinal chemistry, Jun-01, Volume: 19, Issue:11
SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells.
AID1615210Induction of DNA damage in human RCC4/VHL cells assessed as induction of p53 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615221Inhibition of autophagic flux in human RCC4/VHL cells assessed as increase in p62 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615211Induction of autophagy in VHL-deficient human RCC4 cells assessed as increase in conversion of LC3B1 to LC3B2 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615226Induction of cellular phenotype changes in VHL-deficient human RCC4 cells at 1.25 uM incubated for 24 hrs by inverted microscopic analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615208Induction of DNA damage in VHL-deficient human RCC4 cells assessed as induction of p53 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615213Induction of autophagy in human RCC4/VHL cells assessed as increase in conversion of LC3B1 to LC3B2 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615202Cytotoxicity against VHL-positive human RCC4/VHL cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID443288Growth inhibition of VHL-null human RCC4 cells after 4 days by XTT assay2010Journal of medicinal chemistry, Jan-28, Volume: 53, Issue:2
4-Pyridylanilinothiazoles that selectively target von Hippel-Lindau deficient renal cell carcinoma cells by inducing autophagic cell death.
AID1615224Induction of apoptosis in VHL-deficient human RCC4 cells assessed as cleavage of pro-caspase 3 at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1064301Cytotoxicity against human RCC4/VHL cells after 4 days by XTT assay2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Identifying novel targets in renal cell carcinoma: design and synthesis of affinity chromatography reagents.
AID612852Growth inhibition of human RCC4 cells after 4 days by XTT assay2011Bioorganic & medicinal chemistry, Jun-01, Volume: 19, Issue:11
SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells.
AID612854Selectivity ratio IC50 for human RCC4/VHL cells to IC50 for human RCC4 cells2011Bioorganic & medicinal chemistry, Jun-01, Volume: 19, Issue:11
SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells.
AID1615199Cytotoxicity against VHL-positive human RCC10 cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615223Selectivity ratio of IC50 for VHL-positive human RCC4/VHL cells to IC50 for VHL-deficient human RCC4 cells2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1064300Selectivity ratio of IC50 for human RCC4/VHL cells to IC50 for human RCC4 cells2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Identifying novel targets in renal cell carcinoma: design and synthesis of affinity chromatography reagents.
AID1615204Cytotoxicity against VHL-deficient human 786-0 cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID443289Ratio of IC50 for human RCC4-VHL cells to IC50 for VHL-null human RCC4 cells2010Journal of medicinal chemistry, Jan-28, Volume: 53, Issue:2
4-Pyridylanilinothiazoles that selectively target von Hippel-Lindau deficient renal cell carcinoma cells by inducing autophagic cell death.
AID1615220Inhibition of autophagic flux in VHL-deficient human RCC4 cells assessed as increase in p62 expression at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615203Cytotoxicity against VHL-deficient human RCC10 cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615232Induction of cellular phenotype changes in human RCC4/VHL cells at 1.25 uM incubated for 24 hrs by inverted microscopic analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615201Cytotoxicity against VHL-deficient human RCC4 cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID1615205Cytotoxicity against VHL-positive human 786-0 cells assessed as reduction in cell viability incubated for 4 days by XTT assay2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID612853Growth inhibition of human RCC4/VHL cells after 4 days by XTT assay2011Bioorganic & medicinal chemistry, Jun-01, Volume: 19, Issue:11
SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells.
AID1615230Induction of apoptosis in human RCC4/VHL cells assessed as cleavage of pro-caspase 3 at 1.25 uM incubated for 24 hrs by Western blot analysis2019European journal of medicinal chemistry, Oct-01, Volume: 179Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (26)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (15.38)29.6817
2010's13 (50.00)24.3611
2020's9 (34.62)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 19.04

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index19.04 (24.57)
Research Supply Index3.33 (2.92)
Research Growth Index4.75 (4.65)
Search Engine Demand Index15.26 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (19.04)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (3.70%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other26 (96.30%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]