Page last updated: 2024-11-12

roburic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

roburic acid : A tetracyclic triterpenoid with formula C30H40O2 that is isolated from the roots of Gentiana dahurica and Gentiana macrophylla. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

FloraRankFlora DefinitionFamilyFamily Definition
GentianagenusA plant genus of the family Gentianaceae whose members contain SECOIRIDOIDS and have been used in TRADITIONAL MEDICINE for suppressing INFLAMMATION.[MeSH]GentianaceaeA plant family of the order Gentianales, subclass Asteridae, class Magnoliopsida.[MeSH]
Gentiana dahuricaspecies[no description available]GentianaceaeA plant family of the order Gentianales, subclass Asteridae, class Magnoliopsida.[MeSH]

Cross-References

ID SourceID
PubMed CID12315005
CHEMBL ID3289101
CHEBI ID132851

Synonyms (18)

Synonym
CHEBI:132851
roburic acid
3-[(1s,2s,4ar,4bs,6ar,9r,10s,10ar,12ar)-1,4a,4b,6a,9,10-hexamethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a,4b,5,6,6a,7,8,9,10,10a,12,12a-hexadecahydrochrysen-1-yl]propanoic acid
bdbm50019155
chembl3289101 ,
6812-81-3
AC-34402
Q-100767
roburic-acid
AKOS030530461
mfcd09953817
3-[(1s,2s,4ar,4bs,6ar,9r,10s,10ar,12ar)-1,4a,4b,6a,9,10-hexamethyl-2-prop-1-en-2-yl-2,3,4,5,6,7,8,9,10,10a,12,12a-dodecahydrochrysen-1-yl]propanoic acid
CS-0009001
HY-N0481
A915485
roburinsaeure;
DTXSID101318071
AS-83217

Research Excerpts

Overview

Roburic acid (ROB) is a naturally occurred tetracyclic triterpenoid. The anticancer activity of this compound has not been reported.

ExcerptReferenceRelevance
"Roburic acid (ROB) is a naturally occurred tetracyclic triterpenoid, and the anticancer activity of this compound has not been reported. "( Inhibitory effect of roburic acid in combination with docetaxel on human prostate cancer cells.
Goodin, S; Li, D; Liu, W; Ma, YY; Sheng, Z; Wang, X; Wu, M; Wu, P; Xuetao, X; Zhang, K; Zhao, DG; Zheng, X, 2022
)
2.48

Compound-Compound Interactions

ExcerptReferenceRelevance
" In this study, the potential synergistic anticancer effect and the underlying mechanisms of ROB in combination with DOC on prostate cancer were investigated."( Inhibitory effect of roburic acid in combination with docetaxel on human prostate cancer cells.
Goodin, S; Li, D; Liu, W; Ma, YY; Sheng, Z; Wang, X; Wu, M; Wu, P; Xuetao, X; Zhang, K; Zhao, DG; Zheng, X, 2022
)
1.04
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
plant metaboliteAny eukaryotic metabolite produced during a metabolic reaction in plants, the kingdom that include flowering plants, conifers and other gymnosperms.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
tetracyclic triterpenoidAny triterpenoid consisting of a tetracyclic skeleton.
olefinic compoundAny organic molecular entity that contains at least one C=C bond.
monocarboxylic acidAn oxoacid containing a single carboxy group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (3)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Prostaglandin E synthaseHomo sapiens (human)IC50 (µMol)10.00000.00102.030810.0000AID1153839
Prostaglandin G/H synthase 1Ovis aries (sheep)IC50 (µMol)10.00000.00032.177410.0000AID1153846; AID1153848
Prostaglandin G/H synthase 2Homo sapiens (human)IC50 (µMol)10.00000.00010.995010.0000AID1153847; AID1153849
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (65)

Processvia Protein(s)Taxonomy
prostaglandin biosynthetic processProstaglandin E synthaseHomo sapiens (human)
prostaglandin metabolic processProstaglandin E synthaseHomo sapiens (human)
signal transductionProstaglandin E synthaseHomo sapiens (human)
cell population proliferationProstaglandin E synthaseHomo sapiens (human)
negative regulation of cell population proliferationProstaglandin E synthaseHomo sapiens (human)
sensory perception of painProstaglandin E synthaseHomo sapiens (human)
regulation of fever generationProstaglandin E synthaseHomo sapiens (human)
positive regulation of prostaglandin secretionProstaglandin E synthaseHomo sapiens (human)
regulation of inflammatory responseProstaglandin E synthaseHomo sapiens (human)
cellular oxidant detoxificationProstaglandin E synthaseHomo sapiens (human)
prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
response to oxidative stressProstaglandin G/H synthase 2Homo sapiens (human)
embryo implantationProstaglandin G/H synthase 2Homo sapiens (human)
learningProstaglandin G/H synthase 2Homo sapiens (human)
memoryProstaglandin G/H synthase 2Homo sapiens (human)
regulation of blood pressureProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell population proliferationProstaglandin G/H synthase 2Homo sapiens (human)
response to xenobiotic stimulusProstaglandin G/H synthase 2Homo sapiens (human)
response to nematodeProstaglandin G/H synthase 2Homo sapiens (human)
response to fructoseProstaglandin G/H synthase 2Homo sapiens (human)
response to manganese ionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vascular endothelial growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cyclooxygenase pathwayProstaglandin G/H synthase 2Homo sapiens (human)
bone mineralizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fever generationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic plasticityProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of synaptic transmission, dopaminergicProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin secretionProstaglandin G/H synthase 2Homo sapiens (human)
response to estradiolProstaglandin G/H synthase 2Homo sapiens (human)
response to lipopolysaccharideProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of peptidyl-serine phosphorylationProstaglandin G/H synthase 2Homo sapiens (human)
response to vitamin DProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to heatProstaglandin G/H synthase 2Homo sapiens (human)
response to tumor necrosis factorProstaglandin G/H synthase 2Homo sapiens (human)
maintenance of blood-brain barrierProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of protein import into nucleusProstaglandin G/H synthase 2Homo sapiens (human)
hair cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of apoptotic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of nitric oxide biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vasoconstrictionProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
decidualizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle cell proliferationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of inflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
response to glucocorticoidProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of calcium ion transportProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicProstaglandin G/H synthase 2Homo sapiens (human)
response to fatty acidProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to mechanical stimulusProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to lead ionProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to ATPProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to hypoxiaProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to non-ionic osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to fluid shear stressProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of transforming growth factor beta productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fibroblast growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of platelet-derived growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cellular oxidant detoxificationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of neuroinflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathway in response to osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to homocysteineProstaglandin G/H synthase 2Homo sapiens (human)
response to angiotensinProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (13)

Processvia Protein(s)Taxonomy
glutathione transferase activityProstaglandin E synthaseHomo sapiens (human)
glutathione peroxidase activityProstaglandin E synthaseHomo sapiens (human)
prostaglandin-D synthase activityProstaglandin E synthaseHomo sapiens (human)
protein bindingProstaglandin E synthaseHomo sapiens (human)
glutathione bindingProstaglandin E synthaseHomo sapiens (human)
prostaglandin-E synthase activityProstaglandin E synthaseHomo sapiens (human)
peroxidase activityProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin-endoperoxide synthase activityProstaglandin G/H synthase 2Homo sapiens (human)
protein bindingProstaglandin G/H synthase 2Homo sapiens (human)
enzyme bindingProstaglandin G/H synthase 2Homo sapiens (human)
heme bindingProstaglandin G/H synthase 2Homo sapiens (human)
protein homodimerization activityProstaglandin G/H synthase 2Homo sapiens (human)
metal ion bindingProstaglandin G/H synthase 2Homo sapiens (human)
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygenProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (12)

Processvia Protein(s)Taxonomy
nuclear envelope lumenProstaglandin E synthaseHomo sapiens (human)
endoplasmic reticulum membraneProstaglandin E synthaseHomo sapiens (human)
membraneProstaglandin E synthaseHomo sapiens (human)
perinuclear region of cytoplasmProstaglandin E synthaseHomo sapiens (human)
membraneProstaglandin E synthaseHomo sapiens (human)
nuclear inner membraneProstaglandin G/H synthase 2Homo sapiens (human)
nuclear outer membraneProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulumProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum lumenProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum membraneProstaglandin G/H synthase 2Homo sapiens (human)
caveolaProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
protein-containing complexProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (7)

Assay IDTitleYearJournalArticle
AID1868239Inhibition of recombinant human SENP1 assessed as reduction in deSUMOylation of RanGAP1-SUMO1 at 5 uM using RanGAP1-SUMO1 as substrate preincubated for 10 mins followed by substrate addition and measured after 30 mins relative to control2022Journal of natural products, 05-27, Volume: 85, Issue:5
Discovery of Natural Ursane-type SENP1 Inhibitors and the Platinum Resistance Reversal Activity Against Human Ovarian Cancer Cells: A Structure-Activity Relationship Study.
AID1153839Inhibition of microsomal PGES1 isolated from IL-1beta-stimulated human A549 cells preincubated for 15 mins followed by substrate addition measured after 1 min by RP-HPLC analysis2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
AID1153848Inhibition of ovine COX-1 using arachidonic acid as substrate preincubated for 5 mins followed by substrate addition measured after 5 mins by HPLC analysis2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
AID1153837Inhibition of microsomal PGES1 isolated from IL-1beta-stimulated human A549 cells assessed as residual activity at 10 uM preincubated for 15 mins followed by substrate addition measured after 1 min by RP-HPLC analysis relative to control2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
AID1153847Inhibition of human COX-2 using arachidonic acid as substrate assessed as PGE2 formation after 2 mins by LC-MS/MS analysis2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
AID1153849Inhibition of human recombinant COX-2 using arachidonic acid as substrate preincubated for 5 mins followed by substrate addition measured after 5 mins by HPLC analysis2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
AID1153846Inhibition of ovine COX-1 using arachidonic acid as substrate assessed as PGE2 formation after 2 mins by LC-MS/MS analysis2014Journal of natural products, Jun-27, Volume: 77, Issue:6
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's1 (16.67)24.3611
2020's5 (83.33)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 21.19

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index21.19 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index5.50 (4.65)
Search Engine Demand Index15.26 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (21.19)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews2 (33.33%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other4 (66.67%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]