Page last updated: 2024-12-06

parabanic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Parabanic acid, also known as oxalylurea, is a heterocyclic compound with the formula C3H2N2O3. It is a white, crystalline solid that is soluble in water. Parabanic acid is a derivative of urea and oxalic acid. It can be synthesized by the oxidation of uric acid, or by the reaction of oxalyl chloride with urea. Parabanic acid is a powerful oxidizing agent and can be used to oxidize alcohols, aldehydes, and ketones. It is also a strong acid and can be used to catalyze the formation of esters. Parabanic acid is a valuable reagent in organic synthesis, and it is also used as a food additive. It has been studied for its potential medicinal applications, including its ability to inhibit the growth of cancer cells and its potential as a treatment for Alzheimer's disease. Its importance lies in its versatility as a reagent and its potential for diverse applications in chemistry, biology, and medicine. The study of parabanic acid is ongoing, with researchers exploring its properties and applications in various fields.'

parabanic acid: structure [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

parabanic acid : An imidazolidinone that is imidazolidine which is substituted by oxo groups at positions 2, 4 and 5. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID67126
CHEMBL ID1534940
CHEBI ID74661
SCHEMBL ID123424
MeSH IDM0046936

Synonyms (47)

Synonym
smr001230699
MLS002153232
parabanic acid, 99%
imidazolidinetrione
nsc-9789
oxalylurea
imidazole-trione
imidazoletrione
parabanic acid
trioxoimidazolidine
120-89-8
nsc9789
2,4,5-trioxoimidazolidine
2,4,5-imidazolidinetrione
inchi=1/c3h2n2o3/c6-1-2(7)5-3(8)4-1/h(h2,4,5,6,7,8
imidazolidine-2,4,5-trione
parabanate
BMSE000748
n,n'-oxalylurea
P0195
A18128
NCGC00247053-01
AKOS009159493
unii-3xgr439t9p
einecs 204-434-3
nsc 9789
ai3-60193
3xgr439t9p ,
HMS2234G09
FT-0609783
CHEBI:74661 ,
S10361
parabanic acid [mi]
HMS3373G08
SCHEMBL123424
DTXSID2059516
2,4,5-imidazolidinetrione #
2,4,5-imidazolinetrione
CHEMBL1534940
J-004409
mfcd00014493
AS-58391
BCP20123
Q17190867
imidazoline-2,4,5-trione
SY051889
CS-W013645

Research Excerpts

Overview

Parabanic acid appears to be an important marker of free radical reactions. It may be used to monitor free radical activity and to evaluate pharmacological therapy with radical scavengers.

ExcerptReferenceRelevance
"Parabanic acid appears to be an important marker of free radical reactions in vivo and may be used to monitor free radical activity and to evaluate pharmacological therapy with radical scavengers."( Parabanic acid for monitoring of oxygen radical activity in the injured human brain.
Hillered, L; Persson, L, 1995
)
2.46
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
human metaboliteAny mammalian metabolite produced during a metabolic reaction in humans (Homo sapiens).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
imidazolidinoneAn imidazolidine containing one or more oxo groups.
hydracidA hydracid is a compound which contains hydrogen that is not bound to oxygen, and which produces a conjugate base by loss of positive hydrogen ion(s) (hydrons).
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (2)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Smad3Homo sapiens (human)Potency3.54810.00527.809829.0929AID588855
TAR DNA-binding protein 43Homo sapiens (human)Potency1.00001.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (19)

TimeframeStudies, This Drug (%)All Drugs %
pre-19906 (31.58)18.7374
1990's4 (21.05)18.2507
2000's1 (5.26)29.6817
2010's5 (26.32)24.3611
2020's3 (15.79)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 26.06

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index26.06 (24.57)
Research Supply Index3.00 (2.92)
Research Growth Index4.38 (4.65)
Search Engine Demand Index29.35 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (26.06)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies1 (5.26%)4.05%
Observational0 (0.00%)0.25%
Other18 (94.74%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]