Page last updated: 2024-12-11

LL-Z1640-1

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID9863860
CHEMBL ID1801951
CHEBI ID67866
SCHEMBL ID18290212

Synonyms (10)

Synonym
dihydroxymethylzearalenone
smr002047994
MLS003373237
chebi:67866 ,
CHEMBL1801951 ,
bdbm50347546
ll-z1640-1
SCHEMBL18290212
(4s,9s,10s,12e)-9,10,18-trihydroxy-16-methoxy-4-methyl-3-oxabicyclo[12.4.0]octadeca-1(14),12,15,17-tetraene-2,8-dione
Q27136342
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
metaboliteAny intermediate or product resulting from metabolism. The term 'metabolite' subsumes the classes commonly known as primary and secondary metabolites.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
resorcinolsAny benzenediol in which the two hydroxy groups are meta to one another.
macrolideA macrocyclic lactone with a ring of twelve or more members derived from a polyketide.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (4)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
TDP1 proteinHomo sapiens (human)Potency23.10930.000811.382244.6684AID686978; AID686979
Smad3Homo sapiens (human)Potency8.02090.00527.809829.0929AID588855; AID720534; AID720536; AID720537
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Mitogen-activated protein kinase kinase kinase 7Homo sapiens (human)IC50 (µMol)2.60000.00560.24702.6000AID1254043
Transcription factor p65Homo sapiens (human)IC50 (µMol)50.00000.00011.89818.8000AID606031
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (109)

Processvia Protein(s)Taxonomy
MAPK cascadeMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of T cell cytokine productionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cytoplasmic pattern recognition receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
MyD88-dependent toll-like receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
chromatin remodelingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
inflammatory responseMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
canonical NF-kappaB signal transductionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
I-kappaB phosphorylationMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
JNK cascadeMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
negative regulation of gene expressionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of macroautophagyMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of interleukin-2 productionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
toll-like receptor 3 signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
toll-like receptor 4 signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
TRIF-dependent toll-like receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
nucleotide-binding domain, leucine rich repeat containing receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
p38MAPK cascadeMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
Fc-epsilon receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
interleukin-33-mediated signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
interleukin-17A-mediated signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
defense response to bacteriumMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
anoikisMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of JUN kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of cell cycleMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of cell sizeMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
T cell receptor signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
interleukin-1-mediated signaling pathwayMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cellular response to tumor necrosis factorMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cellular response to hypoxiaMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of non-canonical NF-kappaB signal transductionMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cellular response to angiotensinMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferationMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of vascular associated smooth muscle cell migrationMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
immune responseMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
positive regulation of interleukin-1 beta productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-6 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-8 productionTranscription factor p65Homo sapiens (human)
positive regulation of amyloid-beta formationTranscription factor p65Homo sapiens (human)
positive regulation of NF-kappaB transcription factor activityTranscription factor p65Homo sapiens (human)
nucleotide-binding oligomerization domain containing 2 signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
liver developmentTranscription factor p65Homo sapiens (human)
hair follicle developmentTranscription factor p65Homo sapiens (human)
defense response to tumor cellTranscription factor p65Homo sapiens (human)
response to ischemiaTranscription factor p65Homo sapiens (human)
acetaldehyde metabolic processTranscription factor p65Homo sapiens (human)
chromatin organizationTranscription factor p65Homo sapiens (human)
DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
inflammatory responseTranscription factor p65Homo sapiens (human)
cellular defense responseTranscription factor p65Homo sapiens (human)
neuropeptide signaling pathwayTranscription factor p65Homo sapiens (human)
canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
positive regulation of cell population proliferationTranscription factor p65Homo sapiens (human)
response to xenobiotic stimulusTranscription factor p65Homo sapiens (human)
animal organ morphogenesisTranscription factor p65Homo sapiens (human)
response to UV-BTranscription factor p65Homo sapiens (human)
positive regulation of vascular endothelial growth factor productionTranscription factor p65Homo sapiens (human)
positive regulation of gene expressionTranscription factor p65Homo sapiens (human)
positive regulation of Schwann cell differentiationTranscription factor p65Homo sapiens (human)
negative regulation of angiogenesisTranscription factor p65Homo sapiens (human)
cytokine-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
protein catabolic processTranscription factor p65Homo sapiens (human)
response to muramyl dipeptideTranscription factor p65Homo sapiens (human)
response to progesteroneTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-12 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-6 productionTranscription factor p65Homo sapiens (human)
positive regulation of interleukin-8 productionTranscription factor p65Homo sapiens (human)
response to insulinTranscription factor p65Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of protein sumoylationTranscription factor p65Homo sapiens (human)
response to cobalaminTranscription factor p65Homo sapiens (human)
toll-like receptor 4 signaling pathwayTranscription factor p65Homo sapiens (human)
intracellular signal transductionTranscription factor p65Homo sapiens (human)
cellular response to hepatocyte growth factor stimulusTranscription factor p65Homo sapiens (human)
response to muscle stretchTranscription factor p65Homo sapiens (human)
non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
vascular endothelial growth factor signaling pathwayTranscription factor p65Homo sapiens (human)
prolactin signaling pathwayTranscription factor p65Homo sapiens (human)
negative regulation of protein catabolic processTranscription factor p65Homo sapiens (human)
negative regulation of apoptotic processTranscription factor p65Homo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
response to amino acidTranscription factor p65Homo sapiens (human)
negative regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of DNA-templated transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of transcription by RNA polymerase IITranscription factor p65Homo sapiens (human)
negative regulation of insulin receptor signaling pathwayTranscription factor p65Homo sapiens (human)
regulation of inflammatory responseTranscription factor p65Homo sapiens (human)
positive regulation of T cell receptor signaling pathwayTranscription factor p65Homo sapiens (human)
positive regulation of NF-kappaB transcription factor activityTranscription factor p65Homo sapiens (human)
response to cAMPTranscription factor p65Homo sapiens (human)
defense response to virusTranscription factor p65Homo sapiens (human)
cellular response to hydrogen peroxideTranscription factor p65Homo sapiens (human)
interleukin-1-mediated signaling pathwayTranscription factor p65Homo sapiens (human)
response to interleukin-1Transcription factor p65Homo sapiens (human)
cellular response to lipopolysaccharideTranscription factor p65Homo sapiens (human)
cellular response to lipoteichoic acidTranscription factor p65Homo sapiens (human)
cellular response to peptidoglycanTranscription factor p65Homo sapiens (human)
cellular response to nicotineTranscription factor p65Homo sapiens (human)
cellular response to interleukin-1Transcription factor p65Homo sapiens (human)
cellular response to interleukin-6Transcription factor p65Homo sapiens (human)
cellular response to tumor necrosis factorTranscription factor p65Homo sapiens (human)
postsynapse to nucleus signaling pathwayTranscription factor p65Homo sapiens (human)
antiviral innate immune responseTranscription factor p65Homo sapiens (human)
negative regulation of non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
positive regulation of non-canonical NF-kappaB signal transductionTranscription factor p65Homo sapiens (human)
negative regulation of miRNA transcriptionTranscription factor p65Homo sapiens (human)
positive regulation of miRNA transcriptionTranscription factor p65Homo sapiens (human)
cellular response to angiotensinTranscription factor p65Homo sapiens (human)
positive regulation of leukocyte adhesion to vascular endothelial cellTranscription factor p65Homo sapiens (human)
positive regulation of miRNA metabolic processTranscription factor p65Homo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathwayTranscription factor p65Homo sapiens (human)
cellular response to stressTranscription factor p65Homo sapiens (human)
response to cytokineTranscription factor p65Homo sapiens (human)
innate immune responseTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (39)

Processvia Protein(s)Taxonomy
magnesium ion bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
transcription coactivator bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
MAP kinase kinase kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
type II transforming growth factor beta receptor bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
protein bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
ATP bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
MAP kinase kinase kinase kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
receptor tyrosine kinase bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
ubiquitin protein ligase bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
histone kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
identical protein bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
scaffold protein bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
protein serine/threonine kinase bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
DNA-binding transcription factor bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
linear polyubiquitin bindingMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
transcription cis-regulatory region bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II transcription regulatory region sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
RNA polymerase II core promoter sequence-specific DNA bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
transcription coactivator bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificTranscription factor p65Homo sapiens (human)
DNA bindingTranscription factor p65Homo sapiens (human)
chromatin bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor activityTranscription factor p65Homo sapiens (human)
protein bindingTranscription factor p65Homo sapiens (human)
enzyme bindingTranscription factor p65Homo sapiens (human)
protein kinase bindingTranscription factor p65Homo sapiens (human)
chromatin DNA bindingTranscription factor p65Homo sapiens (human)
ubiquitin protein ligase bindingTranscription factor p65Homo sapiens (human)
peptide bindingTranscription factor p65Homo sapiens (human)
phosphate ion bindingTranscription factor p65Homo sapiens (human)
identical protein bindingTranscription factor p65Homo sapiens (human)
protein homodimerization activityTranscription factor p65Homo sapiens (human)
actinin bindingTranscription factor p65Homo sapiens (human)
histone deacetylase bindingTranscription factor p65Homo sapiens (human)
NF-kappaB bindingTranscription factor p65Homo sapiens (human)
ankyrin repeat bindingTranscription factor p65Homo sapiens (human)
general transcription initiation factor bindingTranscription factor p65Homo sapiens (human)
DNA-binding transcription factor bindingTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (13)

Processvia Protein(s)Taxonomy
cytoplasmMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cytosolMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
nucleusMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
cytosolMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
plasma membraneMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
endosome membraneMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
ATAC complexMitogen-activated protein kinase kinase kinase 7Homo sapiens (human)
nucleolusTranscription factor p65Homo sapiens (human)
nucleusTranscription factor p65Homo sapiens (human)
glutamatergic synapseTranscription factor p65Homo sapiens (human)
nucleusTranscription factor p65Homo sapiens (human)
nucleoplasmTranscription factor p65Homo sapiens (human)
cytoplasmTranscription factor p65Homo sapiens (human)
cytosolTranscription factor p65Homo sapiens (human)
NF-kappaB p50/p65 complexTranscription factor p65Homo sapiens (human)
NF-kappaB complexTranscription factor p65Homo sapiens (human)
chromatinTranscription factor p65Homo sapiens (human)
transcription regulator complexTranscription factor p65Homo sapiens (human)
cytoplasmTranscription factor p65Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (31)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID606029Antimicrobial activity against Bacillus subtilis by agar plate diffusion assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID606027Antimicrobial activity against Staphylococcus aureus by agar plate diffusion assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID606028Antimicrobial activity against Mycobacterium smegmatis by agar plate diffusion assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756566Induction of apoptosis in ConA-induced mouse splenic T cells assessed as late apoptotic cells at 15 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 0.6 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID606022Cytotoxicity against human MCF7 cells after 72 hrs by MTS assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756565Induction of apoptosis in ConA-induced mouse splenic T cells assessed as early apoptotic cells at 15 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 7.1 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID606023Cytotoxicity against human H460 cells after 72 hrs by MTS assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756552Immunosuppressive activity in BALB/c mouse splenocytes assessed as inhibition of concanavalin A-stimulated T-cell proliferation incubated for 48 hrs by MTT assay2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID1756564Induction of apoptosis in ConA-induced mouse splenic T cells assessed as late apoptotic cells at 5 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 0.6 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID1756563Induction of apoptosis in ConA-induced mouse splenic T cells assessed as early apoptotic cells at 5 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 7.1 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID1254043Inhibition of TAK1 (unknown origin)2015Bioorganic & medicinal chemistry, Nov-01, Volume: 23, Issue:21
Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues.
AID606025Cytotoxicity against human MDA-MB-435 cells after 72 hrs by MTS assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756562Induction of apoptosis in ConA-induced mouse splenic T cells assessed as late apoptotic cells at 1 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 0.6 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID1756561Induction of apoptosis in ConA-induced mouse splenic T cells assessed as early apoptotic cells at 1 uM after 48 hrs by Annexin V-FITC/propidium iodide staining based flow cytometry analysis (Rvb = 7.1 %)2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID606021Cytotoxicity against human HT-29 cells after 72 hrs by MTS assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756553Immunosuppressive activity in BALB/c mouse splenocytes assessed as inhibition of LPS-stimulated B-cell proliferation incubated for 48 hrs by MTT assay2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
AID606024Cytotoxicity against human SF268 cells after 72 hrs by MTS assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID606026Antimicrobial activity against Escherichia coli by agar plate diffusion assay2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID606031Inhibition of NFkappa p65 isolated from nuclear extract of human HeLa cells by ELISA2011Journal of natural products, May-27, Volume: 74, Issue:5
Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships.
AID1756554Cytotoxicity against BALB/c mouse splenocytes at 50 uM incubated for 48 hrs by MTT assay2021Journal of natural products, 02-26, Volume: 84, Issue:2
Hypothemycin-Type Resorcylic Acid Lactones with Immunosuppressive Activities from a
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (14.29)29.6817
2010's4 (57.14)24.3611
2020's2 (28.57)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.51

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.51 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.59 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.51)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]