Page last updated: 2024-10-15

bix 02189

Cross-References

ID SourceID
PubMed CID135659062
CHEMBL ID3182395
CHEBI ID91423
SCHEMBL ID12700719
SCHEMBL ID16684970
SCHEMBL ID16684971
MeSH IDM0527064

Synonyms (44)

Synonym
1094614-85-3
bix02189
bix-02189
BIX 02189 ,
NCGC00346544-01
S1531
(z)-3-((3-((dimethylamino)methyl)phenylamino)(phenyl)methylene)-n,n-dimethyl-2-oxoindoline-6-carboxamide
BRD-K73368362-001-01-8
smr004702850
MLS006011058
(z)-3-(((3-((dimethylamino)methyl)phenyl)amino)(phenyl)methylene)-n,n-dimethyl-2-oxoindoline-6-carboxamide
SCHEMBL12700719
1265916-41-3
(3z)-3-[[[3-[(dimethylamino)methyl]phenyl]amino]phenylmethylene]-2,3-dihydro-n,n-dimethyl-2-oxo-1h-indole-6-carboxamide
((3-((dimethylamino)methyl)phenylamino)(phenyl)methylene)-n,n-dimethyl-2-oxoindoline-6-carboxamide
(3z)-3-[[3-[(dimethylamino)methyl]anilino]-phenylmethylidene]-n,n-dimethyl-2-oxo-1h-indole-6-carboxamide
gtpl9380
AC-28463
AKOS024458373
CHEMBL3182395
(e/z)-bix02189
AKOS026750473
SCHEMBL16684970
SCHEMBL16684971
EX-A222
CHEBI:91423
HMS3654B22
bix02189 (bix 02189
SW219634-1
bix-02189(random configuration)
bix-02189 (random configuration)
3-[[3-[(dimethylamino)methyl]anilino]-phenylmethylidene]-n,n-dimethyl-2-oxo-1h-indole-6-carboxamide
Q27163273
3-(((3-((dimethylamino)methyl)phenyl)amino)(phenyl)methylene)-n,n-dimethyl-2-oxoindoline-6-carboxamide ,
AS-16769
BCP11307
A11890
HMS3295M03
CCG-269126
3-[n-[3-[(dimethylamino)methyl]phenyl]-c-phenylcarbonimidoyl]-2-hydroxy-n,n-dimethyl-1h-indole-6-carboxamide
DTXSID201025843
AC-36851
CS-0031255
HY-12056A

Bioavailability

ExcerptReference
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
PPM1D proteinHomo sapiens (human)Potency18.55690.00529.466132.9993AID1347411
EWS/FLI fusion proteinHomo sapiens (human)Potency22.92440.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
Interferon betaHomo sapiens (human)Potency18.55690.00339.158239.8107AID1347411
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Dual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)IC50 (µMol)0.00150.00150.81995.7000AID1567603; AID1720300; AID1909545
Mitogen-activated protein kinase 7Homo sapiens (human)IC50 (µMol)0.05900.05901.28186.3680AID1567602; AID1909544; AID747994
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (62)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
MAPK cascadeDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
signal transductionDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
heart developmentDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
positive regulation of cell growthDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of NF-kappaB transcription factor activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of interleukin-8 productionDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of heterotypic cell-cell adhesionDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of smooth muscle cell apoptotic processDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
positive regulation of MAP kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
insulin-like growth factor receptor signaling pathwayDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
positive regulation of epithelial cell proliferationDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
positive regulation of protein metabolic processDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of response to cytokine stimulusDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
ERK5 cascadeDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
cellular response to growth factor stimulusDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
cellular response to laminar fluid shear stressDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of cell migration involved in sprouting angiogenesisDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of chemokine (C-X-C motif) ligand 2 productionDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathway in absence of ligandDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
MAPK cascadeMitogen-activated protein kinase 7Homo sapiens (human)
signal transductionMitogen-activated protein kinase 7Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayMitogen-activated protein kinase 7Homo sapiens (human)
cell differentiationMitogen-activated protein kinase 7Homo sapiens (human)
calcineurin-NFAT signaling cascadeMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of heterotypic cell-cell adhesionMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of smooth muscle cell apoptotic processMitogen-activated protein kinase 7Homo sapiens (human)
regulation of angiogenesisMitogen-activated protein kinase 7Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of inflammatory responseMitogen-activated protein kinase 7Homo sapiens (human)
positive regulation of protein metabolic processMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of response to cytokine stimulusMitogen-activated protein kinase 7Homo sapiens (human)
cellular response to hydrogen peroxideMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of calcineurin-NFAT signaling cascadeMitogen-activated protein kinase 7Homo sapiens (human)
cellular response to growth factor stimulusMitogen-activated protein kinase 7Homo sapiens (human)
cellular response to laminar fluid shear stressMitogen-activated protein kinase 7Homo sapiens (human)
cellular response to transforming growth factor beta stimulusMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathwayMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of endothelial cell apoptotic processMitogen-activated protein kinase 7Homo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathway in absence of ligandMitogen-activated protein kinase 7Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 7Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (15)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
protein kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
protein serine/threonine kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
protein tyrosine kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
protein bindingDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
ATP bindingDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
metal ion bindingDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
protein serine kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
MAP kinase kinase activityDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 7Homo sapiens (human)
enzyme inhibitor activityMitogen-activated protein kinase 7Homo sapiens (human)
protein bindingMitogen-activated protein kinase 7Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 7Homo sapiens (human)
mitogen-activated protein kinase bindingMitogen-activated protein kinase 7Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 7Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 7Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (8)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
spindleDual specificity mitogen-activated protein kinase kinase 5Homo sapiens (human)
nucleusMitogen-activated protein kinase 7Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 7Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 7Homo sapiens (human)
cytosolMitogen-activated protein kinase 7Homo sapiens (human)
PML bodyMitogen-activated protein kinase 7Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 7Homo sapiens (human)
nucleusMitogen-activated protein kinase 7Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (41)

Assay IDTitleYearJournalArticle
AID1345738Human mitogen-activated protein kinase 7 (ERK subfamily)2008Biochemical and biophysical research communications, Dec-05, Volume: 377, Issue:1
Identification of pharmacological inhibitors of the MEK5/ERK5 pathway.
AID1345731Human mitogen-activated protein kinase kinase 5 (STE7 family)2008Biochemical and biophysical research communications, Dec-05, Volume: 377, Issue:1
Identification of pharmacological inhibitors of the MEK5/ERK5 pathway.
AID1345533Human transforming growth factor beta receptor 1 (Type I receptor serine/threonine kinases)2008Biochemical and biophysical research communications, Dec-05, Volume: 377, Issue:1
Identification of pharmacological inhibitors of the MEK5/ERK5 pathway.
AID1720301Selectivity ratio of IC50 for ERK5 (unknown origin) to IC50 for MEK5 (unknown origin)2020Bioorganic & medicinal chemistry letters, 07-01, Volume: 30, Issue:13
Non-'classical' MEKs: A review of MEK3-7 inhibitors.
AID1720300Inhibition of MEK5 (unknown origin)2020Bioorganic & medicinal chemistry letters, 07-01, Volume: 30, Issue:13
Non-'classical' MEKs: A review of MEK3-7 inhibitors.
AID1909544Inhibition of ERK5 (unknown origin) expressed in baculovirus expression system incubated for 90 mins in presence of ATP by PKlight ATP detection reagent based luciferase assay2022Journal of medicinal chemistry, 05-12, Volume: 65, Issue:9
Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor.
AID747994Inhibition of ERK5 phosphorylation in sorbitol-stimulated human HeLa cells2013Journal of medicinal chemistry, Jun-13, Volume: 56, Issue:11
X-ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor.
AID1567603Inhibition of GST-tagged MEK5 (unknown origin) expressed in baculovirus expression system incubated for 90 mins by HTS assay2019European journal of medicinal chemistry, Sep-15, Volume: 178Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4.
AID1567602Inhibition of GST-tagged ERK5 (unknown origin) expressed in baculovirus expression system incubated for 90 mins by HTS assay2019European journal of medicinal chemistry, Sep-15, Volume: 178Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4.
AID1720302Selectivity ratio of IC50 for TGFbetaR1 (unknown origin) to IC50 for MEK5 (unknown origin)2020Bioorganic & medicinal chemistry letters, 07-01, Volume: 30, Issue:13
Non-'classical' MEKs: A review of MEK3-7 inhibitors.
AID1909545Inhibition of MEK5 (unknown origin) expressed in baculovirus expression system incubated for 90 mins in presence of ATP by PKlight ATP detection reagent based luciferase assay2022Journal of medicinal chemistry, 05-12, Volume: 65, Issue:9
Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (31)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (3.23)29.6817
2010's20 (64.52)24.3611
2020's10 (32.26)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews2 (6.45%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other29 (93.55%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]