ID Source | ID |
---|---|
PubMed CID | 11393719 |
CHEMBL ID | 188434 |
SCHEMBL ID | 4719834 |
MeSH ID | M0492999 |
Synonym |
---|
4-{1-ethyl-7-[(piperidin-4-ylamino)methyl]-1h-imidazo[4,5-c]pyridin-2-yl}-1,2,5-oxadiazol-3-amine |
chembl188434 , |
bdbm24996 |
oxadiazole-containing compound, 9 |
sb-747651 |
sb-747651a |
NCGC00273984-03 |
gtpl8130 |
compound 26 |
n-[[2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethylimidazo[5,4-d]pyridin-7-yl]methyl]piperidin-4-amine |
MBCJUIJWPYUEBX-UHFFFAOYSA-N |
[2-(4-amino-furazan-3-yl)-1-ethyl-1h-imidazo[4,5-c]pyridin-7-ylmethyl]-piperidin-4-yl-amine |
SCHEMBL4719834 |
NCGC00273984-05 |
Q27088740 |
607372-46-3 |
4-[1-ethyl-7-[(piperidin-4-ylamino)methyl]imidazo[4,5-c]pyridin-2-yl]-1,2,5-oxadiazol-3-amine |
sb-747651-a |
4-(1-ethyl-7-((piperidin-4-ylamino)methyl)-1h-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-amine |
HY-114038 |
CS-0064916 |
AKOS040749431 |
Excerpt | Reference | Relevance |
---|---|---|
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs." | ( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019) | 0.51 |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
EWS/FLI fusion protein | Homo sapiens (human) | Potency | 11.6404 | 0.0013 | 10.1577 | 42.8575 | AID1259252; AID1259255; AID1259256 |
cytochrome P450 2D6 | Homo sapiens (human) | Potency | 37.9083 | 0.0010 | 8.3798 | 61.1304 | AID1645840 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Ribosomal protein S6 kinase alpha-5 | Homo sapiens (human) | IC50 (µMol) | 0.2345 | 0.0004 | 1.3066 | 8.3000 | AID1798494; AID240472; AID391373 |
Replicase polyprotein 1ab | Severe acute respiratory syndrome coronavirus 2 | IC50 (µMol) | 2.0700 | 0.0002 | 2.4585 | 9.9600 | AID1640021 |
Ribosomal protein S6 kinase beta-1 | Homo sapiens (human) | IC50 (µMol) | 0.2700 | 0.0004 | 0.9046 | 10.0000 | AID240549 |
Cyclin-dependent kinase 2 | Homo sapiens (human) | IC50 (µMol) | 10.0000 | 0.0004 | 1.0444 | 10.0000 | AID240512 |
RAC-alpha serine/threonine-protein kinase | Homo sapiens (human) | IC50 (µMol) | 0.3055 | 0.0002 | 0.7387 | 10.0000 | AID1798494; AID391372 |
RAC-beta serine/threonine-protein kinase | Homo sapiens (human) | IC50 (µMol) | 0.3957 | 0.0005 | 0.5013 | 7.6000 | AID1798494; AID391375 |
Rho-associated protein kinase 1 | Homo sapiens (human) | IC50 (µMol) | 0.2888 | 0.0004 | 0.8549 | 10.0000 | AID1798494; AID240521 |
Dual specificity tyrosine-phosphorylation-regulated kinase 1A | Homo sapiens (human) | IC50 (µMol) | 4.9000 | 0.0031 | 0.7140 | 9.0120 | AID240611 |
Ribosomal protein S6 kinase alpha-1 | Homo sapiens (human) | IC50 (µMol) | 0.3266 | 0.0001 | 0.1861 | 1.2600 | AID1798494 |
Rho-associated protein kinase 1 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 0.2785 | 0.0020 | 0.1883 | 0.7410 | AID1798494; AID391377 |
RAC-gamma serine/threonine-protein kinase | Homo sapiens (human) | IC50 (µMol) | 0.3798 | 0.0006 | 0.4743 | 4.0000 | AID1798494; AID391376 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1347103 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1346986 | P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347089 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347154 | Primary screen GU AMC qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347094 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347097 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1296008 | Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening | 2020 | SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1 | Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. |
AID1347082 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347106 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347083 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347091 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347101 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347105 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347093 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347100 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347104 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347096 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347092 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1346987 | P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347099 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347086 | qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal | 2020 | Antiviral research, 01, Volume: 173 | A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. |
AID1347095 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347107 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID1347102 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347108 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347098 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1508630 | Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay | 2021 | Cell reports, 04-27, Volume: 35, Issue:4 | A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. |
AID1347090 | qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells | 2018 | Oncotarget, Jan-12, Volume: 9, Issue:4 | Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. |
AID1347159 | Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347160 | Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1347411 | qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary | 2020 | ACS chemical biology, 07-17, Volume: 15, Issue:7 | High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle. |
AID391375 | Inhibition of human AKT2 | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID240512 | Inhibitory concentration against selected kinase CDK2 | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID240521 | Inhibitory concentration against selected kinase ROCK1 | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID391376 | Inhibition of human AKT3 | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID391373 | Inhibition of MSK1 | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID242937 | Ratio of GSK-3 IC50 to MSK-1 IC50 | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID240472 | Inhibitory concentration against MSK-1 | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID243464 | Ratio of RSK-1 IC50 to MSK-1 IC50 | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID391372 | Inhibition of human AKT1 | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID391377 | Inhibition of rat ROCK1 | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID240549 | Inhibitory concentration against selected kinase p70S6K | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID240611 | Inhibitory concentration against selected kinase DYRK1-alpha | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
AID1798494 | In Vitro Kinase Inhibition Assay from Article 10.1021/jm8004527: \\Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT ki | 2008 | Journal of medicinal chemistry, Sep-25, Volume: 51, Issue:18 | Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. |
AID1345329 | Human ribosomal protein S6 kinase A5 (MSK subfamily) | 2005 | Bioorganic & medicinal chemistry letters, Jul-15, Volume: 15, Issue:14 | (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 2 (20.00) | 24.3611 |
2020's | 6 (60.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.
| This Compound (34.36) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 10 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |