Proteins > RAC-alpha serine/threonine-protein kinase
Page last updated: 2024-08-07 16:29:24
RAC-alpha serine/threonine-protein kinase
A RAC-alpha serine/threonine-protein kinase that is encoded in the genome of human. [PRO:WCB, UniProtKB:P31749]
Synonyms
EC 2.7.11.1;
Protein kinase B;
PKB;
Protein kinase B alpha;
PKB alpha;
Proto-oncogene c-Akt;
RAC-PK-alpha
Research
Bioassay Publications (106)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 43 (40.57) | 29.6817 |
2010's | 57 (53.77) | 24.3611 |
2020's | 6 (5.66) | 2.80 |
Compounds (282)
Drugs with Inhibition Measurements
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | EC50 | 0.4600 | 2 | 2 |
staurosporine | Homo sapiens (human) | Kd | 0.0200 | 2 | 2 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
inositol-1,3,4,5-tetrakisphosphate | Homo sapiens (human) | Kd | 3.0800 | 1 | 0 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 12.9333 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
canertinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
pd 173955 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 8.2125 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 0.2781 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc-0068 | Homo sapiens (human) | Kd | 0.0006 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 0.0505 | 2 | 2 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
dcc-2036 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pht 427 | Homo sapiens (human) | Kd | 40.8000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 0.0630 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 0.4400 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
Drugs with Other Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
nsc 23766 | Homo sapiens (human) | Activity | 50.0000 | 1 | 1 |
nimorazole | Homo sapiens (human) | Activity | 2.5000 | 1 | 1 |
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies.European journal of medicinal chemistry, , Oct-05, Volume: 221, 2021
[no title available]European journal of medicinal chemistry, , Jan-15, Volume: 186, 2020
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Isolation, Characterization, and Structure-Activity Relationship Analysis of Abietane Diterpenoids from Callicarpa bodinieri as Spleen Tyrosine Kinase Inhibitors.Journal of natural products, , 04-27, Volume: 81, Issue:4, 2018
Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors.European journal of medicinal chemistry, , Apr-25, Volume: 150, 2018
Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.Bioorganic & medicinal chemistry, , 04-01, Volume: 25, Issue:7, 2017
Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders.European journal of medicinal chemistry, , Dec-01, Volume: 141, 2017
Design, synthesis and biological evaluation of pyrazol-furan carboxamide analogues as novel Akt kinase inhibitors.European journal of medicinal chemistry, , Jul-19, Volume: 117, 2016
Synthesis and biological evaluation of new [1,2,4]triazolo[4,3-a]pyridine derivatives as potential c-Met inhibitors.Bioorganic & medicinal chemistry, , 08-15, Volume: 24, Issue:16, 2016
Discovery of 4-arylamido 3-methyl isoxazole derivatives as novel FMS kinase inhibitors.European journal of medicinal chemistry, , Sep-18, Volume: 102, 2015
Synthesis and biological evaluation of 3-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-4-(indol-3-yl)-maleimides as potent, selective GSK-3β inhibitors and neuroprotective agents.Bioorganic & medicinal chemistry, , Mar-01, Volume: 23, Issue:5, 2015
Investigation of new 2-aryl substituted Benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors targeting vascular endothelial growth factor receptor 2.European journal of medicinal chemistry, , Oct-20, Volume: 103, 2015
Structure-based design, synthesis and biological evaluation of diphenylmethylamine derivatives as novel Akt1 inhibitors.European journal of medicinal chemistry, , Feb-12, Volume: 73, 2014
Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum.Journal of natural products, , Jan-24, Volume: 77, Issue:1, 2014
Discovery of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamide derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: Synthesis and biological evaluation. Part III.Bioorganic & medicinal chemistry, , Feb-15, Volume: 22, Issue:4, 2014
Preparation and evaluation of deconstruction analogues of 7-deoxykalafungin as AKT kinase inhibitors.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 24, Issue:1, 2014
Syntheses of phenylpyrazolodiazepin-7-ones as conformationally rigid analogs of aminopyrazole amide scaffold and their antiproliferative effects on cancer cells.Bioorganic & medicinal chemistry, , Nov-15, Volume: 19, Issue:22, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells.Journal of medicinal chemistry, , May-28, Volume: 52, Issue:10, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of 2-pyrimidyl-5-amidothiophenes as potent inhibitors for AKT: synthesis and SAR studies.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 16, Issue:16, 2006
Synthesis and structure-activity relationship of 3,4'-bispyridinylethylenes: discovery of a potent 3-isoquinolinylpyridine inhibitor of protein kinase B (PKB/Akt) for the treatment of cancer.Bioorganic & medicinal chemistry letters, , Apr-01, Volume: 16, Issue:7, 2006
Discovery of trans-3,4'-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: Synthesis and biological evaluation.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 16, Issue:6, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Synthetic sulfoglycolipids targeting the serine-threonine protein kinase Akt.Bioorganic & medicinal chemistry, , 08-15, Volume: 24, Issue:16, 2016
Synthesis, characterization and Akt phosphorylation inhibitory activity of cyclopentanecarboxylate-substituted alkylphosphocholines.Bioorganic & medicinal chemistry, , Apr-01, Volume: 21, Issue:7, 2013
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Preparation and evaluation of deconstruction analogues of 7-deoxykalafungin as AKT kinase inhibitors.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 24, Issue:1, 2014
Irreversible protein kinase inhibitors: balancing the benefits and risks.Journal of medicinal chemistry, , Jul-26, Volume: 55, Issue:14, 2012
Pyranonaphthoquinone lactones: a new class of AKT selective kinase inhibitors alkylate a regulatory loop cysteine.Journal of medicinal chemistry, , Apr-23, Volume: 52, Issue:8, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Design, synthesis, biological evaluation, and molecular docking of novel benzopyran and phenylpyrazole derivatives as Akt inhibitors.Chemical biology & drug design, , Volume: 85, Issue:6, 2015
Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors.European journal of medicinal chemistry, , Mar-21, Volume: 75, 2014
Structure-based design, synthesis and biological evaluation of diphenylmethylamine derivatives as novel Akt1 inhibitors.European journal of medicinal chemistry, , Feb-12, Volume: 73, 2014
Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors.European journal of medicinal chemistry, , Volume: 46, Issue:12, 2011
Discovery of a novel protein kinase B inhibitor by structure-based virtual screening.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 19, Issue:16, 2009
Virtual docking approaches to protein kinase B inhibition.Journal of medicinal chemistry, , Apr-07, Volume: 48, Issue:7, 2005
Specificity and mechanism of action of some commonly used protein kinase inhibitors.The Biochemical journal, , Oct-01, Volume: 351, Issue:Pt 1, 2000
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays.Journal of medicinal chemistry, , Dec-30, Volume: 47, Issue:27, 2004
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
2-Anilino-4-(benzimidazol-2-yl)pyrimidines--a multikinase inhibitor scaffold with antiproliferative activity toward cancer cell lines.European journal of medicinal chemistry, , Volume: 53, 2012
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors.Journal of medicinal chemistry, , Jun-10, Volume: 53, Issue:11, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor.Science (New York, N.Y.), , Oct-31, Volume: 302, Issue:5646, 2003
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Substituted 3-imidazo[1,2-a]pyridin-3-yl- 4-(1,2,3,4-tetrahydro-[1,4]diazepino-[6,7,1-hi]indol-7-yl)pyrrole-2,5-diones as highly selective and potent inhibitors of glycogen synthase kinase-3.Journal of medicinal chemistry, , Jul-29, Volume: 47, Issue:16, 2004
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
Inhibitor hijacking of Akt activation.Nature chemical biology, , Volume: 5, Issue:7, 2009
QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine.European journal of medicinal chemistry, , Volume: 44, Issue:10, 2009
Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension.Journal of medicinal chemistry, , Jun-28, Volume: 50, Issue:13, 2007
Identification of a novel 3,5-disubstituted pyridine as a potent, selective, and orally active inhibitor of Akt1 kinase.Bioorganic & medicinal chemistry letters, , Jul-15, Volume: 16, Issue:14, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes.Journal of medicinal chemistry, , Oct-22, Volume: 52, Issue:20, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile.Journal of medicinal chemistry, , Nov-30, Volume: 49, Issue:24, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor.Journal of medicinal chemistry, , Apr-05, Volume: 50, Issue:7, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.Journal of medicinal chemistry, , Aug-27, Volume: 52, Issue:16, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Design, synthesis and biological evaluation of AKT inhibitors bearing a piperidin-4-yl appendant.MedChemComm, , Aug-01, Volume: 9, Issue:8, 2018
Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors.European journal of medicinal chemistry, , Jul-15, Volume: 155, 2018
Structural optimization elaborates novel potent Akt inhibitors with promising anticancer activity.European journal of medicinal chemistry, , Sep-29, Volume: 138, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of inter-domain stabilizers-a novel assay system for allosteric akt inhibitors.ACS chemical biology, , Jan-16, Volume: 10, Issue:1, 2015
Phenylalanine-Based Inactivator of AKT Kinase: Design, Synthesis, and Biological Evaluation.ACS medicinal chemistry letters, , May-08, Volume: 5, Issue:5, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Aminofurazans as potent inhibitors of AKT kinase.Bioorganic & medicinal chemistry letters, , Mar-01, Volume: 19, Issue:5, 2009
Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase.Journal of medicinal chemistry, , Sep-25, Volume: 51, Issue:18, 2008
Discovery of inter-domain stabilizers-a novel assay system for allosteric akt inhibitors.ACS chemical biology, , Jan-16, Volume: 10, Issue:1, 2015
Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt).Journal of medicinal chemistry, , Mar-11, Volume: 53, Issue:5, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .Journal of medicinal chemistry, , Sep-25, Volume: 51, Issue:18, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of Clinical Candidate NTQ1062 as a Potent and Bioavailable Akt Inhibitor for the Treatment of Human Tumors.Journal of medicinal chemistry, , 06-23, Volume: 65, Issue:12, 2022
Design, Synthesis, and Evaluation of Potent, Selective, and Bioavailable AKT Kinase Degraders.Journal of medicinal chemistry, , 12-23, Volume: 64, Issue:24, 2021
Discovery of Journal of medicinal chemistry, , 08-26, Volume: 64, Issue:16, 2021
Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.Journal of medicinal chemistry, , Sep-27, Volume: 55, Issue:18, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
Recent progress towards clinically relevant ATP-competitive Akt inhibitors.Bioorganic & medicinal chemistry letters, , 07-01, Volume: 27, Issue:13, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
[no title available],
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of inter-domain stabilizers-a novel assay system for allosteric akt inhibitors.ACS chemical biology, , Jan-16, Volume: 10, Issue:1, 2015
Phenylalanine-Based Inactivator of AKT Kinase: Design, Synthesis, and Biological Evaluation.ACS medicinal chemistry letters, , May-08, Volume: 5, Issue:5, 2014
Selectively nonselective kinase inhibition: striking the right balance.Journal of medicinal chemistry, , Feb-25, Volume: 53, Issue:4, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series.Bioorganic & medicinal chemistry letters, , May-01, Volume: 23, Issue:9, 2013
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.Journal of medicinal chemistry, , Apr-14, Volume: 59, Issue:7, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing.Bioorganic & medicinal chemistry, , Mar-01, Volume: 18, Issue:5, 2010
Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors.European journal of medicinal chemistry, , Oct-15, Volume: 180, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
[no title available],
Discovery of 3,4,6-Trisubstituted Piperidine Derivatives as Orally Active, Low hERG Blocking Akt Inhibitors via Conformational Restriction and Structure-Based Design.Journal of medicinal chemistry, , 08-08, Volume: 62, Issue:15, 2019
Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors.European journal of medicinal chemistry, , Oct-15, Volume: 180, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Design, synthesis and biological evaluation of pyrazol-furan carboxamide analogues as novel Akt kinase inhibitors.European journal of medicinal chemistry, , Jul-19, Volume: 117, 2016
[no title available],
Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines.European journal of medicinal chemistry, , May-04, Volume: 113, 2016
Selectively nonselective kinase inhibition: striking the right balance.Journal of medicinal chemistry, , Feb-25, Volume: 53, Issue:4, 2010
Development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved physical properties and cell activity.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 18, Issue:1, 2008
Allosteric inhibitors of Akt1 and Akt2: a naphthyridinone with efficacy in an A2780 tumor xenograft model.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 18, Issue:11, 2008
Rapid assembly of diverse and potent allosteric Akt inhibitors.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 18, Issue:6, 2008
Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 15, Issue:3, 2005
Discovery of 2,3,5-trisubstituted pyridine derivatives as potent Akt1 and Akt2 dual inhibitors.Bioorganic & medicinal chemistry letters, , Feb-15, Volume: 15, Issue:4, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Enables
This protein enables 18 target(s):
Target | Category | Definition |
protein kinase activity | molecular function | Catalysis of the phosphorylation of an amino acid residue in a protein, usually according to the reaction: a protein + ATP = a phosphoprotein + ADP. [PMID:25399640] |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
protein serine/threonine/tyrosine kinase activity | molecular function | Catalysis of the reactions: ATP + a protein serine = ADP + protein serine phosphate; ATP + a protein threonine = ADP + protein threonine phosphate; and ATP + a protein tyrosine = ADP + protein tyrosine phosphate. [GOC:mah] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
calmodulin binding | molecular function | Binding to calmodulin, a calcium-binding protein with many roles, both in the calcium-bound and calcium-free states. [GOC:krc] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
phosphatidylinositol-3,4,5-trisphosphate binding | molecular function | Binding to phosphatidylinositol-3,4,5-trisphosphate, a derivative of phosphatidylinositol in which the inositol ring is phosphorylated at the 3', 4' and 5' positions. [GOC:bf, GOC:jl] |
kinase activity | molecular function | Catalysis of the transfer of a phosphate group, usually from ATP, to a substrate molecule. [ISBN:0198506732] |
enzyme binding | molecular function | Binding to an enzyme, a protein with catalytic activity. [GOC:jl] |
protein kinase binding | molecular function | Binding to a protein kinase, any enzyme that catalyzes the transfer of a phosphate group, usually from ATP, to a protein substrate. [GOC:jl] |
nitric-oxide synthase regulator activity | molecular function | Binds to and modulates the activity of nitric oxide synthase. [GOC:mah] |
protein serine/threonine kinase inhibitor activity | molecular function | Binds to and stops, prevents or reduces the activity of a protein serine/threonine kinase. [GOC:mah] |
identical protein binding | molecular function | Binding to an identical protein or proteins. [GOC:jl] |
protein homodimerization activity | molecular function | Binding to an identical protein to form a homodimer. [GOC:jl] |
phosphatidylinositol-3,4-bisphosphate binding | molecular function | Binding to phosphatidylinositol-3,4-bisphosphate, a derivative of phosphatidylinositol in which the inositol ring is phosphorylated at the 3' and 4' positions. [GOC:bf, GOC:go_curators] |
14-3-3 protein binding | molecular function | Binding to a 14-3-3 protein. A 14-3-3 protein is any of a large family of approximately 30kDa acidic proteins which exist primarily as homo- and heterodimers within all eukaryotic cells, and have been implicated in the modulation of distinct biological processes by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. Each 14-3-3 protein sequence can be roughly divided into three sections: a divergent amino terminus, the conserved core region and a divergent carboxy-terminus. The conserved middle core region of the 14-3-3s encodes an amphipathic groove that forms the main functional domain, a cradle for interacting with client proteins. [GOC:cna, GOC:mah, PMID:15167810, PMID:19575580] |
potassium channel activator activity | molecular function | Binds to and increases the activity of a potassium channel, resulting in its opening. [GOC:dos] |
protein serine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate. [RHEA:17989] |
Located In
This protein is located in 14 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
nucleoplasm | cellular component | That part of the nuclear content other than the chromosomes or the nucleolus. [GOC:ma, ISBN:0124325653] |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
spindle | cellular component | The array of microtubules and associated molecules that forms between opposite poles of a eukaryotic cell during mitosis or meiosis and serves to move the duplicated chromosomes apart. [ISBN:0198547684] |
cytosol | cellular component | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. [GOC:hjd, GOC:jl] |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
cell-cell junction | cellular component | A cell junction that forms a connection between two or more cells of an organism; excludes direct cytoplasmic intercellular bridges, such as ring canals in insects. [GOC:aruk, GOC:bc, GOC:dgh, GOC:hb, GOC:mah, PMID:21422226, PMID:28096264] |
cell cortex | cellular component | The region of a cell that lies just beneath the plasma membrane and often, but not always, contains a network of actin filaments and associated proteins. [GOC:mah, ISBN:0815316194] |
microtubule cytoskeleton | cellular component | The part of the cytoskeleton (the internal framework of a cell) composed of microtubules and associated proteins. [GOC:jl, ISBN:0395825172] |
lamellipodium | cellular component | A thin sheetlike process extended by the leading edge of a migrating cell or extending cell process; contains a dense meshwork of actin filaments. [ISBN:0815316194] |
vesicle | cellular component | Any small, fluid-filled, spherical organelle enclosed by membrane. [GOC:mah, GOC:pz, GOC:vesicles] |
ciliary basal body | cellular component | A membrane-tethered, short cylindrical array of microtubules and associated proteins found at the base of a eukaryotic cilium (also called flagellum) that is similar in structure to a centriole and derives from it. The cilium basal body is the site of assembly and remodeling of the cilium and serves as a nucleation site for axoneme growth. As well as anchoring the cilium, it is thought to provide a selective gateway regulating the entry of ciliary proteins and vesicles by intraflagellar transport. [GOC:cilia, GOC:clt, PMID:21750193] |
postsynapse | cellular component | The part of a synapse that is part of the post-synaptic cell. [GOC:dos] |
glutamatergic synapse | cellular component | A synapse that uses glutamate as a neurotransmitter. [GOC:dos] |
Active In
This protein is active in 3 target(s):
Target | Category | Definition |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
mitochondrial intermembrane space | cellular component | The region between the inner and outer lipid bilayers of the mitochondrial envelope. [GOC:mah] |
membrane | cellular component | A lipid bilayer along with all the proteins and protein complexes embedded in it and attached to it. [GOC:dos, GOC:mah, ISBN:0815316194] |
Part Of
This protein is part of 1 target(s):
Target | Category | Definition |
protein-containing complex | cellular component | A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together. [GOC:dos, GOC:mah] |
Involved In
This protein is involved in 134 target(s):
Target | Category | Definition |
osteoblast differentiation | biological process | The process whereby a relatively unspecialized cell acquires the specialized features of an osteoblast, a mesodermal or neural crest cell that gives rise to bone. [CL:0000062, GO_REF:0000034, GOC:jid] |
maternal placenta development | biological process | Maternally driven process whose specific outcome is the progression of the placenta over time, from its formation to the mature structure. The placenta is an organ of metabolic interchange between fetus and mother, partly of embryonic origin and partly of maternal origin. [GOC:add, ISBN:068340007X] |
positive regulation of protein phosphorylation | biological process | Any process that activates or increases the frequency, rate or extent of addition of phosphate groups to amino acids within a protein. [GOC:hjd] |
positive regulation of endothelial cell proliferation | biological process | Any process that activates or increases the rate or extent of endothelial cell proliferation. [GOC:add] |
cell migration involved in sprouting angiogenesis | biological process | The orderly movement of endothelial cells into the extracellular matrix in order to form new blood vessels involved in sprouting angiogenesis. [PMID:16391003] |
sphingosine-1-phosphate receptor signaling pathway | biological process | A G protein-coupled receptor signaling pathway initiated by sphingosine-1-phosphate binding to its receptor on the surface of a cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:ascb_2009, GOC:signaling, PMID:14592418, PMID:22001186, Reactome:R-HSA-419428] |
glycogen biosynthetic process | biological process | The chemical reactions and pathways resulting in the formation of glycogen, a polydisperse, highly branched glucan composed of chains of D-glucose residues. [ISBN:0198506732] |
regulation of glycogen biosynthetic process | biological process | Any process that modulates the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of glycogen. [GOC:go_curators] |
glucose metabolic process | biological process | The chemical reactions and pathways involving glucose, the aldohexose gluco-hexose. D-glucose is dextrorotatory and is sometimes known as dextrose; it is an important source of energy for living organisms and is found free as well as combined in homo- and hetero-oligosaccharides and polysaccharides. [ISBN:0198506732] |
regulation of translation | biological process | Any process that modulates the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of proteins by the translation of mRNA or circRNA. [GOC:isa_complete] |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |
negative regulation of protein kinase activity | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of protein kinase activity. [GOC:go_curators] |
protein import into nucleus | biological process | The directed movement of a protein from the cytoplasm to the nucleus. [GOC:jl] |
nitric oxide biosynthetic process | biological process | The chemical reactions and pathways resulting in the formation of nitric oxide, nitrogen monoxide (NO), a colorless gas only slightly soluble in water. [GOC:ai] |
inflammatory response | biological process | The immediate defensive reaction (by vertebrate tissue) to infection or injury caused by chemical or physical agents. The process is characterized by local vasodilation, extravasation of plasma into intercellular spaces and accumulation of white blood cells and macrophages. [GO_REF:0000022, ISBN:0198506732] |
response to oxidative stress | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of oxidative stress, a state often resulting from exposure to high levels of reactive oxygen species, e.g. superoxide anions, hydrogen peroxide (H2O2), and hydroxyl radicals. [GOC:jl, PMID:12115731] |
signal transduction | biological process | The cellular process in which a signal is conveyed to trigger a change in the activity or state of a cell. Signal transduction begins with reception of a signal (e.g. a ligand binding to a receptor or receptor activation by a stimulus such as light), or for signal transduction in the absence of ligand, signal-withdrawal or the activity of a constitutively active receptor. Signal transduction ends with regulation of a downstream cellular process, e.g. regulation of transcription or regulation of a metabolic process. Signal transduction covers signaling from receptors located on the surface of the cell and signaling via molecules located within the cell. For signaling between cells, signal transduction is restricted to events at and within the receiving cell. [GOC:go_curators, GOC:mtg_signaling_feb11] |
epidermal growth factor receptor signaling pathway | biological process | The series of molecular signals initiated by binding of a ligand to the tyrosine kinase receptor EGFR (ERBB1) on the surface of a cell. The pathway ends with regulation of a downstream cellular process, e.g. transcription. [GOC:ceb] |
G protein-coupled receptor signaling pathway | biological process | The series of molecular signals initiated by a ligand binding to its receptor, in which the activated receptor promotes the exchange of GDP for GTP on the alpha-subunit of an associated heterotrimeric G-protein complex. The GTP-bound activated alpha-G-protein then dissociates from the beta- and gamma-subunits to further transmit the signal within the cell. The pathway begins with receptor-ligand interaction, and ends with regulation of a downstream cellular process. The pathway can start from the plasma membrane, Golgi or nuclear membrane. [GOC:bf, GOC:mah, PMID:16902576, PMID:24568158, Wikipedia:G_protein-coupled_receptor] |
canonical NF-kappaB signal transduction | biological process | An intracellular signaling cassette characterized by the I-kappaB-kinase (IKK)-dependent activation of NF-kappaB, also known as the canonical NF-kappaB signaling cascade. The cascade begins with activation of a trimeric IKK complex (consisting of catalytic kinase subunits IKKalpha and/or IKKbeta, and the regulatory scaffold protein NEMO) and ends with the regulation of transcription of target genes by NF-kappaB. In a resting state, NF-kappaB dimers are bound to I-kappaB proteins, sequestering NF-kappaB in the cytoplasm. Phosphorylation of I-kappaB targets I-kappaB for ubiquitination and proteasomal degradation, thus releasing the NF-kappaB dimers, which can translocate to the nucleus to bind DNA and regulate transcription. The canonical NF-kappaB pathway is mainly stimulated by proinflammatory cytokines such as IL-1beta, tumor necrosis factor (TNF)-alpha, antigen ligands, and toll-like receptors (TLRs). [GOC:bf, PMID:12773372, PMID:34659217] |
cell population proliferation | biological process | The multiplication or reproduction of cells, resulting in the expansion of a cell population. [GOC:mah, GOC:mb] |
insulin receptor signaling pathway | biological process | The series of molecular signals generated as a consequence of the insulin receptor binding to insulin. [GOC:ceb] |
apoptotic mitochondrial changes | biological process | The morphological and physiological alterations undergone by mitochondria during apoptosis. [GOC:mah, GOC:mtg_apoptosis] |
response to heat | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a heat stimulus, a temperature stimulus above the optimal temperature for that organism. [GOC:lr] |
gene expression | biological process | The process in which a gene's sequence is converted into a mature gene product (protein or RNA). This includes the production of an RNA transcript and its processing, as well as translation and maturation for protein-coding genes. [GOC:txnOH-2018, PMID:25934543, PMID:31580950] |
negative regulation of autophagy | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of autophagy. Autophagy is the process in which cells digest parts of their own cytoplasm. [GOC:dph, GOC:tb] |
positive regulation of endothelial cell migration | biological process | Any process that increases the rate, frequency, or extent of the orderly movement of an endothelial cell into the extracellular matrix to form an endothelium. [GOC:BHF, GOC:dph, GOC:tb] |
positive regulation of gene expression | biological process | Any process that increases the frequency, rate or extent of gene expression. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product (protein or RNA). [GOC:txnOH-2018] |
negative regulation of gene expression | biological process | Any process that decreases the frequency, rate or extent of gene expression. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product (protein or RNA). [GOC:txnOH-2018] |
negative regulation of long-chain fatty acid import across plasma membrane | biological process | Any process that decreases the rate, frequency or extent of plasma membrane long-chain fatty acid transport. Plasma membrane long-chain fatty acid transport is the directed movement of long-chain fatty acids across the plasma membrane. [GOC:BHF, GOC:dph, GOC:tb] |
fibroblast migration | biological process | Cell migration that is accomplished by extension and retraction of a fibroblast pseudopodium. A fibroblast is a connective tissue cell which secretes an extracellular matrix rich in collagen and other macromolecules. [GOC:BHF, GOC:dph, GOC:tb] |
positive regulation of fibroblast migration | biological process | Any process that increases the rate, frequency or extent of fibroblast cell migration. Fibroblast cell migration is accomplished by extension and retraction of a pseudopodium. [GOC:BHF, GOC:dph, GOC:tb] |
positive regulation of sodium ion transport | biological process | Any process that increases the frequency, rate or extent of the directed movement of sodium ions (Na+) into, out of or within a cell, or between cells, by means of some agent such as a transporter or pore. [GOC:dph, GOC:tb] |
positive regulation of glucose metabolic process | biological process | Any process that increases the rate, frequency or extent of glucose metabolism. Glucose metabolic processes are the chemical reactions and pathways involving glucose, the aldohexose gluco-hexose. [GOC:BHF, GOC:tb] |
negative regulation of endopeptidase activity | biological process | Any process that decreases the frequency, rate or extent of endopeptidase activity, the endohydrolysis of peptide bonds within proteins. [GOC:dph, GOC:tb] |
regulation of neuron projection development | biological process | Any process that modulates the rate, frequency or extent of neuron projection development. Neuron projection development is the process whose specific outcome is the progression of a neuron projection over time, from its formation to the mature structure. A neuron projection is any process extending from a neural cell, such as axons or dendrites (collectively called neurites). [GOC:dph, GOC:tb] |
negative regulation of macroautophagy | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of macroautophagy. [GOC:go_curators] |
phosphorylation | biological process | The process of introducing a phosphate group into a molecule, usually with the formation of a phosphoric ester, a phosphoric anhydride or a phosphoric amide. [ISBN:0198506732] |
protein ubiquitination | biological process | The process in which one or more ubiquitin groups are added to a protein. [GOC:ai] |
peptidyl-serine phosphorylation | biological process | The phosphorylation of peptidyl-serine to form peptidyl-O-phospho-L-serine. [RESID:AA0037] |
peptidyl-threonine phosphorylation | biological process | The phosphorylation of peptidyl-threonine to form peptidyl-O-phospho-L-threonine. [RESID:AA0038] |
virus-mediated perturbation of host defense response | biological process | A process in which a virus interferes with the ability of the host to mount a defense in response to its presence. Host defenses may be induced by the presence of the virus or may be preformed (e.g. physical barriers). The host is defined as the larger of the organisms involved in a symbiotic interaction. [ISBN:1555811272] |
cytokine-mediated signaling pathway | biological process | The series of molecular signals initiated by the binding of a cytokine to a receptor on the surface of a cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:mah, GOC:signaling, PMID:19295629] |
mammalian oogenesis stage | biological process | A reproductive process that is a step in the formation and maturation of an ovum or female gamete from a primordial female germ cell. [GOC:isa_complete, GOC:mtg_sensu] |
cell differentiation | biological process | The cellular developmental process in which a relatively unspecialized cell, e.g. embryonic or regenerative cell, acquires specialized structural and/or functional features that characterize a specific cell. Differentiation includes the processes involved in commitment of a cell to a specific fate and its subsequent development to the mature state. [ISBN:0198506732] |
positive regulation of cell growth | biological process | Any process that activates or increases the frequency, rate, extent or direction of cell growth. [GOC:go_curators] |
regulation of cell migration | biological process | Any process that modulates the frequency, rate or extent of cell migration. [GOC:go_curators] |
positive regulation of cell migration | biological process | Any process that activates or increases the frequency, rate or extent of cell migration. [GOC:go_curators] |
T cell costimulation | biological process | The process of providing, via surface-bound receptor-ligand pairs, a second, antigen-independent, signal in addition to that provided by the T cell receptor to augment T cell activation. [ISBN:0781735149] |
negative regulation of protein ubiquitination | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the addition of ubiquitin groups to a protein. [GOC:mah] |
regulation of myelination | biological process | Any process that modulates the frequency, rate or extent of the formation of a myelin sheath around nerve axons. [GOC:mah] |
lipopolysaccharide-mediated signaling pathway | biological process | The series of molecular signals initiated by the binding of a lipopolysaccharide (LPS) to a receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. Lipopolysaccharides are major components of the outer membrane of Gram-negative bacteria, making them prime targets for recognition by the immune system. [GOC:mah, GOC:signaling, PMID:15379975] |
TOR signaling | biological process | The series of molecular signals mediated by TOR (Target of rapamycin) proteins, members of the phosphoinositide (PI) 3-kinase related kinase (PIKK) family that act as serine/threonine kinases in response to nutrient availability or growth factors. [PMID:12372295] |
negative regulation of fatty acid beta-oxidation | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of fatty acid beta-oxidation. [GOC:mah] |
positive regulation of endodeoxyribonuclease activity | biological process | Any process that activates or increases the frequency, rate or extent of endodeoxyribonuclease activity, the hydrolysis of ester linkages within deoxyribonucleic acid by creating internal breaks. [GOC:mah] |
negative regulation of protein binding | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of protein binding. [GOC:mah] |
response to food | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a food stimulus; food is anything which, when taken into the body, serves to nourish or build up the tissues or to supply body heat. [GOC:add, ISBN:0721601464] |
peripheral nervous system myelin maintenance | biological process | The process in which the structure and material content of mature peripheral nervous system myelin is kept in a functional state. [GOC:dgh] |
positive regulation of proteasomal ubiquitin-dependent protein catabolic process | biological process | Any process that activates or increases the frequency, rate or extent of the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, and mediated by the proteasome. [GOC:mah] |
cellular response to insulin stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an insulin stimulus. Insulin is a polypeptide hormone produced by the islets of Langerhans of the pancreas in mammals, and by the homologous organs of other organisms. [GOC:mah, ISBN:0198506732] |
positive regulation of peptidyl-serine phosphorylation | biological process | Any process that activates or increases the frequency, rate or extent of the phosphorylation of peptidyl-serine. [GOC:mah] |
response to fluid shear stress | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a fluid shear stress stimulus. Fluid shear stress is the force acting on an object in a system where the fluid is moving across a solid surface. [GOC:sl] |
cellular response to reactive oxygen species | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a reactive oxygen species stimulus. Reactive oxygen species include singlet oxygen, superoxide, and oxygen free radicals. [GOC:mah] |
interleukin-18-mediated signaling pathway | biological process | The series of molecular signals initiated by interleukin-18 binding to its receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:bf, GOC:BHF, GOC:signaling] |
cellular response to vascular endothelial growth factor stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a vascular endothelial growth factor stimulus. [GOC:BHF, GOC:rl, PMID:18440775] |
cellular response to decreased oxygen levels | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus reflecting a decline in the level of oxygen. [GOC:al] |
non-canonical NF-kappaB signal transduction | biological process | An intracellular signaling cassette characterized by the NIK-dependent processing and activation of NF-kappaB. Begins with activation of the NF-kappaB-inducing kinase (NIK), which in turn phosphorylates and activates IkappaB kinase alpha (IKKalpha). IKKalpha phosphorylates the NF-kappa B2 protein (p100) leading to p100 processing and release of an active NF-kappaB (p52). The non-canonical NF-kappaB signaling pathway is generally activated by ligands of the TNF receptor superfamily, including lymphotoxin beta (LTB), CD40, OX40, RANK, TWEAK and B cell-activating factor (BAFF). [GOC:bf, GOC:mg2, GOC:signaling, GOC:vs, PMID:11239468, PMID:15140882, PMID:34659217] |
glucose homeostasis | biological process | Any process involved in the maintenance of an internal steady state of glucose within an organism or cell. [GOC:go_curators] |
regulation of apoptotic process | biological process | Any process that modulates the occurrence or rate of cell death by apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
negative regulation of apoptotic process | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of cell death by apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
negative regulation of cysteine-type endopeptidase activity involved in apoptotic process | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of a cysteine-type endopeptidase activity involved in the apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
proteasome-mediated ubiquitin-dependent protein catabolic process | biological process | The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, and mediated by the proteasome. [GOC:go_curators] |
anoikis | biological process | Apoptosis triggered by inadequate or inappropriate adherence to substrate e.g. after disruption of the interactions between normal epithelial cells and the extracellular matrix. [GOC:jl, http://www.copewithcytokines.de/] |
regulation of mRNA stability | biological process | Any process that modulates the propensity of mRNA molecules to degradation. Includes processes that both stabilize and destabilize mRNAs. [GOC:jl] |
phosphatidylinositol 3-kinase/protein kinase B signal transduction | biological process | An intracellular signaling cassette that starts with phosphatidylinositol 3-kinase (PI3K) activation, production of phosphatidylinositol 3-phosphate (PI3P), activation of PDK1, which recruits and ending with the activation of protein kinase B (PKB, also known as Akt). PI3K is activated by cell surface receptors. Note that PTEN is an inhibitor of the pathway. [PMID:20517722, PMID:22952397] |
positive regulation of blood vessel endothelial cell migration | biological process | Any process that activates or increases the frequency, rate or extent of the migration of the endothelial cells of blood vessels. [GOC:go_curators] |
positive regulation of nitric oxide biosynthetic process | biological process | Any process that activates or increases the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of nitric oxide. [GOC:go_curators] |
positive regulation of fat cell differentiation | biological process | Any process that activates or increases the frequency, rate or extent of adipocyte differentiation. [GOC:go_curators] |
positive regulation of glycogen biosynthetic process | biological process | Any process that activates or increases the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of glycogen. [GOC:go_curators] |
positive regulation of cyclin-dependent protein serine/threonine kinase activity | biological process | Any process that activates or increases the frequency, rate or extent of CDK activity. [GOC:go_curators, GOC:pr] |
negative regulation of Notch signaling pathway | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the Notch signaling pathway. [GOC:go_curators] |
negative regulation of proteolysis | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the hydrolysis of a peptide bond or bonds within a protein. [GOC:go_curators] |
positive regulation of DNA-templated transcription | biological process | Any process that activates or increases the frequency, rate or extent of cellular DNA-templated transcription. [GOC:go_curators, GOC:txnOH] |
positive regulation of transcription by RNA polymerase II | biological process | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. [GOC:go_curators, GOC:txnOH] |
positive regulation of glucose import | biological process | Any process that activates or increases the frequency, rate or extent of the import of the hexose monosaccharide glucose into a cell or organelle. [GOC:ai, GOC:dph, GOC:tb] |
positive regulation of organ growth | biological process | Any process that activates or increases the frequency, rate or extent of growth of an organ of an organism. [GOC:bf, GOC:tb] |
protein autophosphorylation | biological process | The phosphorylation by a protein of one or more of its own amino acid residues (cis-autophosphorylation), or residues on an identical protein (trans-autophosphorylation). [ISBN:0198506732] |
positive regulation of lipid biosynthetic process | biological process | Any process that activates or increases the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of lipids. [GOC:ai] |
insulin-like growth factor receptor signaling pathway | biological process | The series of molecular signals initiated by a ligand binding to an insulin-like growth factor receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:ceb] |
behavioral response to pain | biological process | Any process that results in a change in the behavior of an organism as a result of a pain stimulus. Pain stimuli cause activation of nociceptors, peripheral receptors for pain, include receptors which are sensitive to painful mechanical stimuli, extreme heat or cold, and chemical stimuli. [GOC:jid] |
positive regulation of smooth muscle cell proliferation | biological process | Any process that activates or increases the rate or extent of smooth muscle cell proliferation. [CL:0000192, GOC:ebc] |
positive regulation of nitric-oxide synthase activity | biological process | Any process that activates or increases the activity of the enzyme nitric-oxide synthase. [GOC:ai] |
positive regulation of DNA-binding transcription factor activity | biological process | Any process that activates or increases the frequency, rate or extent of activity of a transcription factor, any factor involved in the initiation or regulation of transcription. [GOC:ai] |
striated muscle cell differentiation | biological process | The process in which a relatively unspecialized cell acquires specialized features of a striated muscle cell; striated muscle fibers are divided by transverse bands into striations, and cardiac and voluntary muscle are types of striated muscle. [CL:0000737, GOC:ai] |
positive regulation of protein metabolic process | biological process | Any process that activates or increases the frequency, rate or extent of the chemical reactions and pathways involving a protein. [GOC:ai] |
excitatory postsynaptic potential | biological process | A process that leads to a temporary increase in postsynaptic potential due to the flow of positively charged ions into the postsynaptic cell. The flow of ions that causes an EPSP is an excitatory postsynaptic current (EPSC) and makes it easier for the neuron to fire an action potential. [GOC:dph, GOC:ef] |
response to growth hormone | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a growth hormone stimulus. Growth hormone is a peptide hormone that binds to the growth hormone receptor and stimulates growth. [GOC:BHF, GOC:dph] |
mammary gland epithelial cell differentiation | biological process | The process in which a relatively unspecialized epithelial cell becomes a more specialized epithelial cell of the mammary gland. [GOC:dph] |
labyrinthine layer blood vessel development | biological process | The process whose specific outcome is the progression of a blood vessel of the labyrinthine layer of the placenta over time, from its formation to the mature structure. The embryonic vessels grow through the layer to come in close contact with the maternal blood supply. [GOC:dph] |
response to UV-A | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a UV-A radiation stimulus. UV-A radiation (UV-A light) spans the wavelengths 315 to 400 nm. [GOC:BHF, GOC:mah] |
response to growth factor | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a growth factor stimulus. [GOC:BHF, GOC:mah] |
cellular response to cadmium ion | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cadmium (Cd) ion stimulus. [GOC:mah] |
cellular response to tumor necrosis factor | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a tumor necrosis factor stimulus. [GOC:mah] |
cellular response to epidermal growth factor stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an epidermal growth factor stimulus. [GOC:mah] |
cellular response to prostaglandin E stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a prostagladin E stimulus. [GOC:mah] |
negative regulation of protein serine/threonine kinase activity | biological process | Any process that decreases the rate, frequency, or extent of protein serine/threonine kinase activity. [GOC:BHF, GOC:mah] |
establishment of protein localization to mitochondrion | biological process | The directed movement of a protein to the mitochondrion or a part of the mitochondrion. [GOC:mah] |
maintenance of protein location in mitochondrion | biological process | Any process in which a protein is maintained in a specific location in a mitochondrion, and is prevented from moving elsewhere. [GOC:mah] |
negative regulation of release of cytochrome c from mitochondria | biological process | Any process that decreases the rate, frequency or extent of release of cytochrome c from mitochondria, the process in which cytochrome c is enabled to move from the mitochondrial intermembrane space into the cytosol, which is an early step in apoptosis and leads to caspase activation. [GOC:BHF, GOC:dph, GOC:mtg_apoptosis, GOC:tb] |
cellular response to granulocyte macrophage colony-stimulating factor stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a granulocyte macrophage colony-stimulating factor stimulus. [GOC:BHF, GOC:ebc, PMID:7901744] |
execution phase of apoptosis | biological process | A stage of the apoptotic process that starts with the controlled breakdown of the cell through the action of effector caspases or other effector molecules (e.g. cathepsins, calpains etc.). Key steps of the execution phase are rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. When the execution phase is completed, the cell has died. [GOC:mtg_apoptosis, PMID:21760595] |
regulation of postsynapse organization | biological process | Any process that modulates the physical form of a postsynapse. [GOC:ai, GOC:dph, GOC:tb] |
regulation of tRNA methylation | biological process | Any process that modulates the frequency, rate or extent of the chemical reactions and pathways involving tRNA methylation. [GOC:vw, PMID:23074192] |
cellular response to oxidised low-density lipoprotein particle stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an oxidized lipoprotein particle stimulus. [GOC:aruk, GOC:BHF, PMID:20037584, PMID:27607416] |
negative regulation of protein localization to lysosome | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of protein localization to lysosome. [GOC:aruk, GOC:bc, PMID:24305806] |
negative regulation of cGAS/STING signaling pathway | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of cGAS/STING signaling pathway. [PMID:29875158] |
positive regulation of G1/S transition of mitotic cell cycle | biological process | Any signaling pathway that increases or activates a cell cycle cyclin-dependent protein kinase to modulate the switch from G1 phase to S phase of the mitotic cell cycle. [GOC:mtg_cell_cycle] |
positive regulation of protein localization to nucleus | biological process | Any process that activates or increases the frequency, rate or extent of protein localization to nucleus. [GOC:TermGenie] |
cellular response to peptide | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a peptide stimulus. [GOC:pr, GOC:TermGenie] |
regulation of signal transduction by p53 class mediator | biological process | Any process that modulates the frequency, rate or extent of signal transduction by p53 class mediator. [GOC:TermGenie] |
negative regulation of cilium assembly | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of cilium assembly. [GOC:cilia, GOC:dph, GOC:TermGenie, PMID:17719545] |
negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of an oxidative stress-induced intrinsic apoptotic signaling pathway. [GOC:BHF, GOC:mtg_apoptosis, GOC:TermGenie, PMID:11672522] |
negative regulation of leukocyte cell-cell adhesion | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of leukocyte cell-cell adhesion. [GO_REF:0000058, GOC:BHF, GOC:rl, GOC:TermGenie, PMID:21106532] |
positive regulation of protein localization to plasma membrane | biological process | Any process that activates or increases the frequency, rate or extent of protein localization to plasma membrane. [GO_REF:0000058, GOC:BHF, GOC:rl, GOC:TermGenie, PMID:11602640] |
positive regulation of I-kappaB phosphorylation | biological process | Any process that activates or increases the frequency, rate or extent of I-kappaB phosphorylation. [GO_REF:0000058, GOC:TermGenie, PMID:23675531] |
positive regulation of TORC1 signaling | biological process | Any process that activates or increases the frequency, rate or extent of TORC1 signaling. [GO_REF:0000058, GOC:TermGenie, PMID:25366275] |
positive regulation of protein localization to endoplasmic reticulum | biological process | Any process that activates or increases the frequency, rate or extent of protein localization to endoplasmic reticulum. [GO_REF:0000058, GOC:TermGenie, PMID:22768340] |
cellular response to nerve growth factor stimulus | biological process | A process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a nerve growth factor stimulus. [PMID:22399805, Wikipedia:Nerve_growth_factor] |
response to insulin-like growth factor stimulus | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an insulin-like growth factor stimulus. [PMID:21932665] |
positive regulation of protein localization to cell surface | biological process | Any process that activates or increases the frequency, rate or extent of protein localization to the cell surface. [GOC:obol] |
regulation of type B pancreatic cell development | biological process | Any process that modulates the frequency, rate or extent of pancreatic B cell development. [GOC:obol, GOC:yaf] |
negative regulation of lymphocyte migration | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of lymphocyte migration. [GOC:mah] |
negative regulation of extrinsic apoptotic signaling pathway in absence of ligand | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of extrinsic apoptotic signaling pathway in absence of ligand. [GOC:mtg_apoptosis] |
intracellular signal transduction | biological process | The process in which a signal is passed on to downstream components within the cell, which become activated themselves to further propagate the signal and finally trigger a change in the function or state of the cell. [GOC:bf, GOC:jl, GOC:signaling, ISBN:3527303782] |