Page last updated: 2024-12-06

s-2678

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

XI-006: diminishes MDM4 promoter activity; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID42640
CHEMBL ID1608727
SCHEMBL ID8738959
MeSH IDM0533276

Synonyms (55)

Synonym
nsc179940
wln: t56 bnonj bo fnw i- at6n dntj d1
58131-57-0
nsc-179940
NCI60_001741
nsc 179940
b2368 ,
4-(4-methyl-1-piperazinyl)-7-nitro-benzofurazan 3-oxide
benzofurazan, 7-(4-methyl-1-piperazinyl)-4-nitro-, 1-oxide
7-(4-methyl-1-piperazinyl)-4-nitrobenzofurazan 1-oxide
nsc 207895
4-(hydroxy(oxido)amino)-7-(4-methyl-1-piperazinyl)-2,15,3-benzoxadiazol-1-ol
NSC207895 ,
nsc-207895 ,
mls000756495 ,
benzofurazan, 4-(4-methyl-1-piperazinyl)-7-nitro-, 3-oxide
smr000528763
NCISTRUC2_001869
NCISTRUC1_000831
4-(4-methylpiperazin-1-yl)-7-nitro-3-oxido-2,1,3-benzoxadiazol-3-ium
NCGC00246958-01
nsc 207895 (xi-006)
NSC-207895 - XI-006
xi006
BCP9000997
xi-006
7-(4-methylpiperazin-1-yl)-4-nitro-2,1,3-benzoxadiazol-1-ium-1-olate
HMS2861M23
BCP0726000315
nsc-207895 (xi-006)
NCGC00246958-02
S2678
MLS006011023
SCHEMBL8738959
2,1,3-benzoxadiazole, 4-(4-methyl-1-piperazinyl)-7-nitro-, 3-oxide
7-(4-methylpiperazino)-4-nitro-1-oxido-benzofurazan-1-ium
4-(4-methylpiperazin-1-yl)-7-nitro-3-oxidanidyl-2,1,3-benzoxadiazol-3-ium
bdbm51256
cid_42640
4-(4-methyl-1-piperazinyl)-7-nitro-3-oxido-2,1,3-benzoxadiazol-3-ium
CHEMBL1608727
DTXSID50206858
7-(4-methylpiperazin-1-yl)-4-nitrobenzo[c][1,2,5]oxadiazole 1-oxide
CS-0003525
HY-14714
NCGC00246958-03
4-(4-methyl-1-piperazinyl)-7-nitro-2,1,3-benzoxadiazole, 3-oxide
F81786
MS-23958
nsc?207895?(xi-006)
AKOS037515473
2,1,3-benzoxadiazole,4-(4-methyl-1-piperazinyl)-7-nitro-,3-oxide
4-(4-methyl-1-piperazinyl)-7-nitro-2,1,3-benzoxadiazole 3-oxide
63J576F4C5
methyl-1-piperazinyl)-7-nitro-benzofurazan 3-oxide, 4-(4-

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (58)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Putative fructose-1,6-bisphosphate aldolaseGiardia intestinalisPotency12.55940.140911.194039.8107AID2451
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency14.12540.177814.390939.8107AID2147
LuciferasePhotinus pyralis (common eastern firefly)Potency37.93300.007215.758889.3584AID588342
ATAD5 protein, partialHomo sapiens (human)Potency3.26290.004110.890331.5287AID504467
USP1 protein, partialHomo sapiens (human)Potency31.62280.031637.5844354.8130AID743255
PPM1D proteinHomo sapiens (human)Potency29.41070.00529.466132.9993AID1347411
TDP1 proteinHomo sapiens (human)Potency0.17360.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency15.18610.180013.557439.8107AID1460; AID1468
thioredoxin glutathione reductaseSchistosoma mansoniPotency44.66840.100022.9075100.0000AID485364
Smad3Homo sapiens (human)Potency9.11630.00527.809829.0929AID588855; AID720534; AID720536; AID720537
EWS/FLI fusion proteinHomo sapiens (human)Potency25.71150.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency1.99530.28189.721235.4813AID2326
67.9K proteinVaccinia virusPotency2.04840.00018.4406100.0000AID720579; AID720580
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency56.23410.707936.904389.1251AID504333
hepatitis C virus polyproteinPotency22.28020.444510.437124.9988AID720575
IDH1Homo sapiens (human)Potency2.90930.005210.865235.4813AID686970
serine-protein kinase ATM isoform aHomo sapiens (human)Potency19.51850.707925.111941.2351AID485349; AID493218
NPC intracellular cholesterol transporter 1 precursorHomo sapiens (human)Potency6.30960.01262.451825.0177AID485313
chromobox protein homolog 1Homo sapiens (human)Potency56.23410.006026.168889.1251AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency29.09290.00419.984825.9290AID504444
transcriptional regulator ERG isoform 3Homo sapiens (human)Potency44.66840.794321.275750.1187AID624246
huntingtin isoform 2Homo sapiens (human)Potency5.62340.000618.41981,122.0200AID1688
importin subunit beta-1 isoform 1Homo sapiens (human)Potency35.48135.804836.130665.1308AID540253
mitogen-activated protein kinase 1Homo sapiens (human)Potency10.00000.039816.784239.8107AID1454
flap endonuclease 1Homo sapiens (human)Potency100.00000.133725.412989.1251AID588795
ubiquitin carboxyl-terminal hydrolase 2 isoform aHomo sapiens (human)Potency14.12540.65619.452025.1189AID463254
ras-related protein Rab-9AHomo sapiens (human)Potency3.16230.00022.621531.4954AID485297
eyes absent homolog 2 isoform aHomo sapiens (human)Potency22.38721.199814.641950.1187AID488837
snurportin-1Homo sapiens (human)Potency35.48135.804836.130665.1308AID540253
histone-lysine N-methyltransferase 2A isoform 2 precursorHomo sapiens (human)Potency44.66840.010323.856763.0957AID2662
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency42.56150.425612.059128.1838AID504891
tumor susceptibility gene 101 proteinHomo sapiens (human)Potency38.63870.129810.833132.6090AID493005; AID651600
GTP-binding nuclear protein Ran isoform 1Homo sapiens (human)Potency35.48135.804816.996225.9290AID540253
DNA polymerase eta isoform 1Homo sapiens (human)Potency89.12510.100028.9256213.3130AID588591
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency17.78280.050127.073689.1251AID588590
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency3.44120.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency1.27100.004611.374133.4983AID624296; AID624297
VprHuman immunodeficiency virus 1Potency31.62281.584919.626463.0957AID651644
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency11.22020.00419.962528.1838AID2675
DNA dC->dU-editing enzyme APOBEC-3F isoform aHomo sapiens (human)Potency25.11890.025911.239831.6228AID602313
neuropeptide S receptor isoform AHomo sapiens (human)Potency10.00000.015812.3113615.5000AID1461
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency42.20906.309660.2008112.2020AID720707; AID720709
Glycoprotein hormones alpha chainHomo sapiens (human)Potency6.30964.46688.344810.0000AID624291
Interferon betaHomo sapiens (human)Potency29.41070.00339.158239.8107AID1347411
Guanine nucleotide-binding protein GHomo sapiens (human)Potency39.81071.995325.532750.1187AID624288
Rap guanine nucleotide exchange factor 4Homo sapiens (human)Potency89.12513.981146.7448112.2020AID720711
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
exodeoxyribonuclease V subunit RecBEscherichia coli str. K-12 substr. MG1655IC50 (µMol)47.12300.10000.10000.1000AID652151
exodeoxyribonuclease V subunit RecCEscherichia coli str. K-12 substr. MG1655IC50 (µMol)47.12300.10000.10000.1000AID652151
BZLF2Human herpesvirus 4 type 2 (Epstein-Barr virus type 2)IC50 (µMol)1.32000.42004.434216.2300AID1419
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
recombinase AMycobacterium tuberculosis H37RvEC50 (µMol)380.00000.018023.2882287.6000AID434968; AID435010
ORF73Human gammaherpesvirus 8EC50 (µMol)75.00000.06008.134632.1400AID435023
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LANAHuman gammaherpesvirus 8AC5014.78930.042032.4569312.0010AID504725; AID504726; AID504727
S100A4, partialHomo sapiens (human)AC503.30000.23501.76286.0200AID687001
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)AC5052.00001.67009.266943.4100AID588683
replicative DNA helicaseMycobacterium tuberculosis H37RvAC50380.00000.057030.7482325.3000AID449749; AID449750
POsterior SegregationCaenorhabditis elegansAC503.29803.298012.464924.6150AID493130
kelch-like ECH-associated protein 1Homo sapiens (human)AC5052.00001.67009.266943.4100AID588683
Zinc finger protein mex-5Caenorhabditis elegansAC5033.40000.300031.0987106.7000AID449745
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (70)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
G protein-coupled receptor signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of cell population proliferationGlycoprotein hormones alpha chainHomo sapiens (human)
hormone-mediated signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
regulation of signaling receptor activityGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of steroid biosynthetic processGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of cell migrationGlycoprotein hormones alpha chainHomo sapiens (human)
thyroid gland developmentGlycoprotein hormones alpha chainHomo sapiens (human)
luteinizing hormone secretionGlycoprotein hormones alpha chainHomo sapiens (human)
organ growthGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIGlycoprotein hormones alpha chainHomo sapiens (human)
negative regulation of organ growthGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone secretionGlycoprotein hormones alpha chainHomo sapiens (human)
thyroid hormone generationGlycoprotein hormones alpha chainHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 4Homo sapiens (human)
G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 4Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 4Homo sapiens (human)
calcium-ion regulated exocytosisRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of exocytosisRap guanine nucleotide exchange factor 4Homo sapiens (human)
insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
positive regulation of insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of synaptic vesicle cycleRap guanine nucleotide exchange factor 4Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (14)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
hormone activityGlycoprotein hormones alpha chainHomo sapiens (human)
protein bindingGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone activityGlycoprotein hormones alpha chainHomo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 4Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
protein-macromolecule adaptor activityRap guanine nucleotide exchange factor 4Homo sapiens (human)
small GTPase bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (15)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular regionGlycoprotein hormones alpha chainHomo sapiens (human)
extracellular spaceGlycoprotein hormones alpha chainHomo sapiens (human)
Golgi lumenGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone complexGlycoprotein hormones alpha chainHomo sapiens (human)
pituitary gonadotropin complexGlycoprotein hormones alpha chainHomo sapiens (human)
extracellular spaceGlycoprotein hormones alpha chainHomo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
cytosolRap guanine nucleotide exchange factor 4Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
hippocampal mossy fiber to CA3 synapseRap guanine nucleotide exchange factor 4Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (47)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1508628Confirmatory qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508627Counterscreen qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: GLuc-NoTag assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508629Cell Viability qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (15)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (6.67)29.6817
2010's7 (46.67)24.3611
2020's7 (46.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 18.65

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index18.65 (24.57)
Research Supply Index2.77 (2.92)
Research Growth Index4.80 (4.65)
Search Engine Demand Index10.37 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (18.65)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational1 (6.67%)0.25%
Other14 (93.33%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]