Page last updated: 2024-11-08

6-methylthiohexyl isothiocyanate

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

6-methylthiohexyl isothiocyanate: isolated from Wasabia japonica (wasabi) [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

1-isothiocyanato-6-(methylsulfanyl)hexane : A isothiocyanate that is hexane in which two of the terminal methyl hydrogens at positions 1 and 6 have been replaced by isothiocyanato and methylsulfanyl groups. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID165224
CHEMBL ID574688
CHEBI ID136921
SCHEMBL ID2679812
MeSH IDM0366011

Synonyms (30)

Synonym
1-isothiocyanato-6-(methylthio)hexane
hexane, 1-isothiocyanato-6-(methylthio)-
1-isothiocyanato-6-(methylsulfanyl)hexane
6-(methylthio)hexyl isothiocyanate
(6-isothiocyanatohexyl)(methyl)sulfane
4430-39-1
CHEBI:136921
6-methylthiohexyl isothiocyanate
6-isothiocyanatohexyl methyl sulfide
lesquerellin
CHEMBL574688 ,
1-isothiocyanato-6-methylsulfanylhexane
AKOS006279131
ccris 8466
unii-63844hol2h
63844hol2h ,
isothiocyanic acid, 6-(methylthio)hexyl ester
fema no. 4415
6-(methylthio)hexyl isothiocyanate [fhfi]
YIBXPFAXPUDDTK-UHFFFAOYSA-N
SCHEMBL2679812
c8h15ns2
DTXSID40196118
bdbm50104727
1-isothiocyanato-6-(methylthio)-hexane
Z1198161073
1-isothiocyanato-6-(methylsulfenyl)-hexane
Q27263576
EN300-131481
PD163957
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (4)

RoleDescription
Arabidopsis thaliana metaboliteAny plant metabolite that is produced by Arabidopsis thaliana.
antineoplastic agentA substance that inhibits or prevents the proliferation of neoplasms.
EC 4.1.1.17 (ornithine decarboxylase) inhibitorAn EC 4.1.1.* (carboxy-lyase) inhibitor that interferes with the action of ornithine decarboxylase (EC 4.1.1.17).
neuroprotective agentAny compound that can be used for the treatment of neurodegenerative disorders.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
isothiocyanateAn organosulfur compound with the general formula R-N=C=S.
methyl sulfideAny aliphatic sulfide in which at least one of the organyl groups attached to the sulfur is a methyl group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (1)

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Transient receptor potential cation channel subfamily A member 1Homo sapiens (human)EC50 (µMol)0.58000.00033.166210.0000AID1235910
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (17)

Processvia Protein(s)Taxonomy
monoatomic ion transportTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
intracellular calcium ion homeostasisTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
cell surface receptor signaling pathwayTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
response to coldTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
response to xenobiotic stimulusTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
response to organic substanceTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
response to organic cyclic compoundTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
sensory perception of painTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
calcium-mediated signalingTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
response to painTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
thermoceptionTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
detection of mechanical stimulus involved in sensory perception of painTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
detection of chemical stimulus involved in sensory perception of painTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
protein homotetramerizationTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
cellular response to hydrogen peroxideTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
calcium ion transmembrane transportTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
cellular response to organic substanceTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (5)

Processvia Protein(s)Taxonomy
calcium channel activityTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
channel activityTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
intracellularly gated calcium channel activityTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
identical protein bindingTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
temperature-gated cation channel activityTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (2)

Processvia Protein(s)Taxonomy
plasma membraneTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
stereocilium bundleTransient receptor potential cation channel subfamily A member 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (11)

Assay IDTitleYearJournalArticle
AID1235908Effect on Ca2+ response in TREx-HEK cells at 1 uM by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235913Activation of human TRPV1 expressed in TREx-HEK cells by Fluo-4 AM dye-based Ca2+ imaging assay relative to 10 uM capsaicin2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235917Agonist activity at mouse TRPM8 expressed in TREx-HEK cells at 300 uM by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235912Activation of human TRPV1 expressed in TREx-HEK cells by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID437561Antiinflammatory activity in mouse J774.1 cells assessed as inhibition of IFN-gamma and LPS-induced nitric oxide production after 20 to 24 hrs by Griess assay2009European journal of medicinal chemistry, Dec, Volume: 44, Issue:12
Anti-nitric oxide production activity of isothiocyanates correlates with their polar surface area rather than their lipophilicity.
AID1235904Activation of human TRPA1 expressed in TREx-HEK cells at 1 uM by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235911Activation of human TRPA1 expressed in TREx-HEK cells by Fluo-4 AM dye-based Ca2+ imaging assay relative to 100 uM ITC2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235914Activation of human TRPV1 expressed in TREx-HEK cells at 300 uM by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID1235906Activation of human TRPA1 expressed in TREx-HEK cells at 1 uM in presence of TRPA1 antagonist HC030031 by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
AID437562Growth inhibition of mouse J774.1 cells assessed as cell viability after 24 hrs by MTT assay2009European journal of medicinal chemistry, Dec, Volume: 44, Issue:12
Anti-nitric oxide production activity of isothiocyanates correlates with their polar surface area rather than their lipophilicity.
AID1235910Activation of human TRPA1 expressed in TREx-HEK cells by Fluo-4 AM dye-based Ca2+ imaging assay2015Journal of natural products, Aug-28, Volume: 78, Issue:8
Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's5 (71.43)24.3611
2020's0 (0.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 13.13

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index13.13 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index5.21 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (13.13)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]