Proteins > Serine/threonine-protein kinase pim-1
Page last updated: 2024-08-07 12:58:35
Serine/threonine-protein kinase pim-1
A proto-oncogene serine/threonine-protein kinase Pim-1 that is encoded in the genome of human. [PRO:DNx, UniProtKB:P11309]
Synonyms
EC 2.7.11.1
Research
Bioassay Publications (77)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 20 (25.97) | 29.6817 |
2010's | 50 (64.94) | 24.3611 |
2020's | 7 (9.09) | 2.80 |
Compounds (285)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
bisindolylmaleimide i | Homo sapiens (human) | IC50 | 0.0680 | 3 | 3 |
emodin | Homo sapiens (human) | IC50 | 2.5000 | 1 | 1 |
2-(4-morpholinyl)-8-phenyl-4h-1-benzopyran-4-one | Homo sapiens (human) | IC50 | 3.3640 | 5 | 5 |
ro 31-8220 | Homo sapiens (human) | IC50 | 0.0100 | 1 | 1 |
colchicine | Homo sapiens (human) | IC50 | 4.3000 | 1 | 1 |
7-methyljuglone | Homo sapiens (human) | IC50 | 28.0000 | 1 | 1 |
1,4-diaminoanthraquinone | Homo sapiens (human) | IC50 | 24.7000 | 1 | 1 |
staurosporine | Homo sapiens (human) | IC50 | 0.0216 | 15 | 15 |
mitoxantrone hydrochloride | Homo sapiens (human) | IC50 | 0.0509 | 1 | 1 |
pinocembrin | Homo sapiens (human) | IC50 | 107.0000 | 2 | 2 |
glabranin | Homo sapiens (human) | IC50 | 12.5000 | 1 | 1 |
cercosporamide | Homo sapiens (human) | IC50 | 8.1000 | 1 | 1 |
ruboxistaurin | Homo sapiens (human) | IC50 | 0.2000 | 2 | 2 |
birb 796 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
7-n-butyl-6-(4'-hydroxyphenyl)-5h-pyrrolo(2,3b)pyrazine | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
7,8,4'-trihydroxyflavone | Homo sapiens (human) | IC50 | 22.0000 | 1 | 1 |
3-cyano-4-phenyl-6-(3-bromo-6-hydroxyphenyl)-2-pyridone | Homo sapiens (human) | IC50 | 0.0500 | 6 | 6 |
2-oxo-4,6-dithiophen-2-yl-1H-pyridine-3-carbonitrile | Homo sapiens (human) | IC50 | 2.0750 | 2 | 2 |
sf 2370 | Homo sapiens (human) | IC50 | 0.1500 | 1 | 1 |
vx-745 | Homo sapiens (human) | IC50 | 5.0000 | 1 | 1 |
quercetin | Homo sapiens (human) | IC50 | 0.7686 | 5 | 5 |
apigenin | Homo sapiens (human) | IC50 | 0.9400 | 1 | 1 |
luteolin | Homo sapiens (human) | IC50 | 1.6000 | 1 | 1 |
gossypetin | Homo sapiens (human) | IC50 | 0.4300 | 1 | 1 |
kaempferol | Homo sapiens (human) | IC50 | 1.3000 | 1 | 1 |
harmine | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
chrysin | Homo sapiens (human) | IC50 | 15.0000 | 1 | 1 |
3,7,4'-trihydroxyflavone | Homo sapiens (human) | IC50 | 0.9800 | 1 | 1 |
fisetin | Homo sapiens (human) | IC50 | 0.8500 | 1 | 1 |
hispidulin | Homo sapiens (human) | IC50 | 2.7100 | 2 | 2 |
norlichexanthone | Homo sapiens (human) | IC50 | 0.3000 | 1 | 1 |
morin | Homo sapiens (human) | IC50 | 2.7000 | 1 | 1 |
myricetin | Homo sapiens (human) | IC50 | 0.7800 | 2 | 2 |
quercetagetin | Homo sapiens (human) | IC50 | 0.3400 | 6 | 6 |
tricetin | Homo sapiens (human) | IC50 | 0.6500 | 2 | 2 |
7-hydroxyflavone | Homo sapiens (human) | IC50 | 14.0000 | 1 | 1 |
astrogorgiadiol | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
5-(4-methoxybenzylidene)thiazolidine-2,4-dione | Homo sapiens (human) | IC50 | 3.5000 | 2 | 3 |
3,7-dihydroxyflavone | Homo sapiens (human) | IC50 | 4.6000 | 1 | 1 |
k00135 | Homo sapiens (human) | IC50 | 0.5105 | 3 | 4 |
ps1145 | Homo sapiens (human) | IC50 | 1.1000 | 1 | 1 |
leucettamine b | Homo sapiens (human) | IC50 | 10.0000 | 3 | 3 |
ageladine a | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | IC50 | 0.0501 | 1 | 1 |
cx 4945 | Homo sapiens (human) | IC50 | 0.0465 | 4 | 3 |
amg 458 | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | IC50 | 2.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | IC50 | 0.0158 | 16 | 16 |
sgi 1776 | Homo sapiens (human) | Ki | 0.0147 | 3 | 3 |
entrectinib | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
pf 3644022 | Homo sapiens (human) | IC50 | 0.0880 | 1 | 0 |
Mps1-IN-2 | Homo sapiens (human) | IC50 | 0.1450 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Ki | 0.0100 | 1 | 1 |
nms p937 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
nms-p118 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | IC50 | 0.0028 | 6 | 6 |
azd1208 | Homo sapiens (human) | Ki | 0.0000 | 2 | 2 |
tp 3654 | Homo sapiens (human) | Ki | 0.0050 | 1 | 1 |
chr-6494 | Homo sapiens (human) | IC50 | 0.0290 | 1 | 1 |
((5z)5-(1,3-benzodioxol-5-yl)methylene-2-phenylamino-3,5-dihydro-4h-imidazol-4-one) | Homo sapiens (human) | IC50 | 2.0600 | 3 | 3 |
XL413 | Homo sapiens (human) | IC50 | 0.0420 | 1 | 1 |
nms-e973 | Homo sapiens (human) | IC50 | 0.0100 | 1 | 1 |
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
bisindolylmaleimide i | Homo sapiens (human) | Kd | 0.0100 | 1 | 1 |
bisindolylmaleimide iv | Homo sapiens (human) | Kd | 0.0270 | 1 | 1 |
ro 31-7549 | Homo sapiens (human) | Kd | 0.0120 | 1 | 1 |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro 31-8220 | Homo sapiens (human) | Kd | 0.0080 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
staurosporine | Homo sapiens (human) | Kd | 0.0057 | 4 | 4 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 10.1333 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 0.8888 | 5 | 5 |
canertinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 15.1000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
pd 173955 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tg 003 | Homo sapiens (human) | Kd | 0.1300 | 1 | 1 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 20.0000 | 3 | 4 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quercetin | Homo sapiens (human) | Kd | 0.0250 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 7.9100 | 4 | 4 |
bosutinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
k00135 | Homo sapiens (human) | Kd | 0.0250 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 7.9200 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 15.6500 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 8.8420 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
chir-265 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 15.1250 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pha 848125 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 15.4700 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 1.2370 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | EC50 | 0.2000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 0.0430 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | EC50 | 5.0050 | 2 | 2 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 0.0070 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 19.3160 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
xmd 8-92 | Homo sapiens (human) | Kd | 0.0800 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 0.0010 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 0.0140 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 1.5000 | 1 | 1 |
Drugs with Other Measurements
Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.Journal of medicinal chemistry, , Jan-08, Volume: 52, Issue:1, 2009
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.The Journal of biological chemistry, , Apr-08, Volume: 280, Issue:14, 2005
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.Journal of medicinal chemistry, , Dec-01, Volume: 48, Issue:24, 2005
[no title available]ACS medicinal chemistry letters, , Nov-11, Volume: 12, Issue:11, 2021
Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.Journal of medicinal chemistry, , Jan-08, Volume: 52, Issue:1, 2009
The selectivity of protein kinase inhibitors: a further update.The Biochemical journal, , Dec-15, Volume: 408, Issue:3, 2007
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.The Journal of biological chemistry, , Apr-08, Volume: 280, Issue:14, 2005
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.The Journal of biological chemistry, , Apr-08, Volume: 280, Issue:14, 2005
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.Journal of medicinal chemistry, , Dec-01, Volume: 48, Issue:24, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells.Bioorganic & medicinal chemistry, , 12-15, Volume: 28, Issue:24, 2020
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Isolation, Characterization, and Structure-Activity Relationship Analysis of Abietane Diterpenoids from Callicarpa bodinieri as Spleen Tyrosine Kinase Inhibitors.Journal of natural products, , 04-27, Volume: 81, Issue:4, 2018
Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as Pim-1 inhibitors.European journal of medicinal chemistry, , Jun-25, Volume: 154, 2018
Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders.European journal of medicinal chemistry, , Dec-01, Volume: 141, 2017
Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors.Bioorganic & medicinal chemistry, , Apr-15, Volume: 24, Issue:8, 2016
Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum.Journal of natural products, , Jan-24, Volume: 77, Issue:1, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells.Journal of medicinal chemistry, , May-28, Volume: 52, Issue:10, 2009
Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors.Bioorganic & medicinal chemistry letters, , Mar-01, Volume: 19, Issue:5, 2009
Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.Journal of medicinal chemistry, , Jan-08, Volume: 52, Issue:1, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.The Journal of biological chemistry, , Apr-08, Volume: 280, Issue:14, 2005
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.Journal of medicinal chemistry, , Dec-01, Volume: 48, Issue:24, 2005
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition.Bioorganic & medicinal chemistry, , 08-07, Volume: 26, Issue:14, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.Journal of medicinal chemistry, , Oct-11, Volume: 55, Issue:19, 2012
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.Journal of medicinal chemistry, , Oct-11, Volume: 55, Issue:19, 2012
Discovery of colon tumor cell growth inhibitory agents through a combinatorial approach.European journal of medicinal chemistry, , Volume: 45, Issue:1, 2010
Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 19, Issue:11, 2009
Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 17, Issue:6, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.The Journal of biological chemistry, , Apr-08, Volume: 280, Issue:14, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor.ACS medicinal chemistry letters, , Oct-13, Volume: 2, Issue:10, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum.Journal of natural products, , Jan-24, Volume: 77, Issue:1, 2014
Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.Journal of medicinal chemistry, , Oct-11, Volume: 55, Issue:19, 2012
Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.Molecular cancer therapeutics, , Volume: 6, Issue:1, 2007
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.Journal of medicinal chemistry, , Dec-01, Volume: 48, Issue:24, 2005
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Total Synthesis of Hispidulin and the Structural Basis for Its Inhibition of Proto-oncogene Kinase Pim-1.Journal of natural products, , Aug-28, Volume: 78, Issue:8, 2015
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase.Bioorganic & medicinal chemistry, , Oct-01, Volume: 15, Issue:19, 2007
Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.Molecular cancer therapeutics, , Volume: 6, Issue:1, 2007
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 19, Issue:11, 2009
Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.Journal of medicinal chemistry, , Jan-08, Volume: 52, Issue:1, 2009
Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase.Bioorganic & medicinal chemistry, , Oct-01, Volume: 15, Issue:19, 2007
Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.Molecular cancer therapeutics, , Volume: 6, Issue:1, 2007
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase.Bioorganic & medicinal chemistry, , Oct-01, Volume: 15, Issue:19, 2007
Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.Molecular cancer therapeutics, , Volume: 6, Issue:1, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 19, Issue:11, 2009
Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity.Cancer research, , Jul-15, Volume: 67, Issue:14, 2007
Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase.Journal of medicinal chemistry, , Dec-01, Volume: 48, Issue:24, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B.Journal of medicinal chemistry, , Nov-08, Volume: 55, Issue:21, 2012
Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing.Journal of medicinal chemistry, , Jun-23, Volume: 54, Issue:12, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Selectivity data: assessment, predictions, concordance, and implications.Journal of medicinal chemistry, , Sep-12, Volume: 56, Issue:17, 2013
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor.European journal of medicinal chemistry, , Dec-15, Volume: 208, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity.Bioorganic & medicinal chemistry letters, , Nov-15, Volume: 21, Issue:22, 2011
Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer.Journal of medicinal chemistry, , Jan-27, Volume: 54, Issue:2, 2011
[no title available],
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily.Journal of medicinal chemistry, , Mar-12, Volume: 52, Issue:5, 2009
Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family.Bioorganic & medicinal chemistry, , 11-15, Volume: 28, Issue:22, 2020
Targeting the immunity protein kinases for immuno-oncology.European journal of medicinal chemistry, , Feb-01, Volume: 163, 2019
Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade.European journal of medicinal chemistry, , Sep-15, Volume: 178, 2019
PIM kinase inhibitors: Structural and pharmacological perspectives.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors.European journal of medicinal chemistry, , Apr-15, Volume: 168, 2019
Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 28, Issue:14, 2018
Structure based drug design of Pim-1 kinase followed by pharmacophore guided synthesis of quinolone-based inhibitors.Bioorganic & medicinal chemistry, , 09-01, Volume: 25, Issue:17, 2017
Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family.Bioorganic & medicinal chemistry, , 05-01, Volume: 25, Issue:9, 2017
Recent Advances in Scaffold Hopping.Journal of medicinal chemistry, , 02-23, Volume: 60, Issue:4, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors.Bioorganic & medicinal chemistry letters, , Feb-15, Volume: 26, Issue:4, 2016
Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors.Bioorganic & medicinal chemistry, , Apr-15, Volume: 24, Issue:8, 2016
Synthesis and Biological Evaluation of Pyrazolo[1,5-a]pyrimidine Compounds as Potent and Selective Pim-1 Inhibitors.ACS medicinal chemistry letters, , Jan-08, Volume: 6, Issue:1, 2015
Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical TriaJournal of medicinal chemistry, , Nov-12, Volume: 58, Issue:21, 2015
Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.ACS medicinal chemistry letters, , Dec-12, Volume: 4, Issue:12, 2013
Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors.Bioorganic & medicinal chemistry letters, , Feb-15, Volume: 22, Issue:4, 2012
Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.Journal of medicinal chemistry, , Oct-11, Volume: 55, Issue:19, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.Journal of medicinal chemistry, , Apr-14, Volume: 59, Issue:7, 2016
[no title available]ACS medicinal chemistry letters, , Nov-11, Volume: 12, Issue:11, 2021
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Recent advances in the development of active hybrid molecules in the treatment of cardiovascular diseases.Bioorganic & medicinal chemistry, , 05-15, Volume: 62, 2022
Targeting the immunity protein kinases for immuno-oncology.European journal of medicinal chemistry, , Feb-01, Volume: 163, 2019
Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family.Bioorganic & medicinal chemistry, , 05-01, Volume: 25, Issue:9, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical TriaJournal of medicinal chemistry, , Nov-12, Volume: 58, Issue:21, 2015
Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.ACS medicinal chemistry letters, , Dec-12, Volume: 4, Issue:12, 2013
Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases.Bioorganic & medicinal chemistry letters, , Jul-15, Volume: 22, Issue:14, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B.Journal of medicinal chemistry, , Nov-08, Volume: 55, Issue:21, 2012
Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing.Journal of medicinal chemistry, , Jun-23, Volume: 54, Issue:12, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Enables
This protein enables 7 target(s):
Target | Category | Definition |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
transcription factor binding | molecular function | Binding to a transcription factor, a protein required to initiate or regulate transcription. [ISBN:0198506732] |
manganese ion binding | molecular function | Binding to a manganese ion (Mn). [GOC:ai] |
ribosomal small subunit binding | molecular function | Binding to a small ribosomal subunit. [GOC:go_curators] |
protein serine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate. [RHEA:17989] |
Located In
This protein is located in 6 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
nucleoplasm | cellular component | That part of the nuclear content other than the chromosomes or the nucleolus. [GOC:ma, ISBN:0124325653] |
nucleolus | cellular component | A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome. [ISBN:0198506732] |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
cytosol | cellular component | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. [GOC:hjd, GOC:jl] |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
Active In
This protein is active in 1 target(s):
Target | Category | Definition |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
Involved In
This protein is involved in 17 target(s):
Target | Category | Definition |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |
apoptotic process | biological process | A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g. an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathway phase) which trigger an execution phase. The execution phase is the last step of an apoptotic process, and is typically characterized by rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. When the execution phase is completed, the cell has died. [GOC:cjm, GOC:dhl, GOC:ecd, GOC:go_curators, GOC:mtg_apoptosis, GOC:tb, ISBN:0198506732, PMID:18846107, PMID:21494263] |
regulation of transmembrane transporter activity | biological process | Any process that modulates the frequency, rate or extent of transmembrane transporter activity. [GOC:dph, GOC:mtg_cardio, GOC:mtg_transport] |
negative regulation of apoptotic process | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of cell death by apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
negative regulation of DNA-binding transcription factor activity | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the activity of a transcription factor, any factor involved in the initiation or regulation of transcription. [GOC:jl] |
negative regulation of innate immune response | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the innate immune response. [GOC:go_curators] |
positive regulation of DNA-templated transcription | biological process | Any process that activates or increases the frequency, rate or extent of cellular DNA-templated transcription. [GOC:go_curators, GOC:txnOH] |
protein autophosphorylation | biological process | The phosphorylation by a protein of one or more of its own amino acid residues (cis-autophosphorylation), or residues on an identical protein (trans-autophosphorylation). [ISBN:0198506732] |
protein stabilization | biological process | Any process involved in maintaining the structure and integrity of a protein and preventing it from degradation or aggregation. [GOC:ai] |
positive regulation of cardiac muscle cell proliferation | biological process | Any process that activates or increases the frequency, rate or extent of cardiac muscle cell proliferation. [GOC:dph, GOC:rph] |
vitamin D receptor signaling pathway | biological process | The series of molecular signals generated as a consequence of a vitamin D receptor binding to one of its physiological ligands. [GOC:BHF, GOC:mah, PMID:12637589] |
cellular response to type II interferon | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an interferon-gamma stimulus. Interferon gamma is the only member of the type II interferon found so far. [GOC:mah] |
positive regulation of brown fat cell differentiation | biological process | Any process that increases the rate, frequency, or extent of brown fat cell differentiation. Brown fat cell differentiation is the process in which a relatively unspecialized cell acquires specialized features of a brown adipocyte, an animal connective tissue cell involved in adaptive thermogenesis. Brown adipocytes contain multiple small droplets of triglycerides and a high number of mitochondria. [GOC:BHF] |
regulation of hematopoietic stem cell proliferation | biological process | Any process that modulates the frequency, rate or extent of hematopoietic stem cell proliferation. [GOC:TermGenie, PMID:23403623] |
positive regulation of TORC1 signaling | biological process | Any process that activates or increases the frequency, rate or extent of TORC1 signaling. [GO_REF:0000058, GOC:TermGenie, PMID:25366275] |
positive regulation of cardioblast proliferation | biological process | Any process that activates or increases the frequency, rate or extent of cardioblast proliferation. [GO_REF:0000058, GOC:bc, GOC:BHF, GOC:BHF_miRNA, GOC:TermGenie, PMID:24236097] |
cellular detoxification | biological process | Any process carried out at the cellular level that reduces or removes the toxicity of a toxic substance. These may include transport of the toxic substance away from sensitive areas and to compartments or complexes whose purpose is sequestration of the toxic substance. [GOC:vw] |