Target type: molecularfunction
Catalysis of the reaction: S-adenosyl-L-methionine + histone H3 L-lysine (position 27) = S-adenosyl-L-homocysteine + histone H3 N6-methyl-L-lysine (position 27). This reaction is the addition of a methyl group to the lysine residue at position 27 of the histone H3 protein. [GOC:ai]
Histone H3K27 methyltransferase activity refers to the enzymatic process of transferring a methyl group from a donor molecule, typically S-adenosyl methionine (SAM), to the lysine residue at position 27 on histone H3. This specific modification plays a crucial role in regulating gene expression, primarily by establishing a repressive chromatin state. The addition of a methyl group to histone H3 lysine 27 (H3K27) alters the structure of chromatin, making it more compact and less accessible to transcriptional machinery. This compacted chromatin state inhibits the binding of transcription factors and RNA polymerase, thereby reducing gene expression. Histone H3K27 methylation is catalyzed by a family of enzymes known as Polycomb group (PcG) proteins, which include EZH2 and EZH1. These enzymes specifically target histone H3 lysine 27 and are responsible for establishing and maintaining repressive chromatin domains. The methylation state of H3K27 can vary, with mono-methylation (H3K27me1), di-methylation (H3K27me2), and tri-methylation (H3K27me3) all contributing to different levels of gene repression. Tri-methylation of H3K27 (H3K27me3) is particularly significant as it represents the most stable and repressive form of the modification. The precise level of H3K27 methylation is tightly controlled and can be influenced by a variety of factors, including developmental stage, cellular signaling pathways, and environmental cues. Dysregulation of H3K27 methylation has been implicated in a range of diseases, including cancer. In summary, histone H3K27 methyltransferase activity is an essential regulatory mechanism that contributes to the establishment and maintenance of repressive chromatin states, ultimately controlling gene expression. The precise level of methylation at H3K27 is critical for normal cellular function and its dysregulation can lead to pathological consequences.'
"
Protein | Definition | Taxonomy |
---|---|---|
Histone-lysine N-methyltransferase EHMT1 | A histone-lysine N-methyltransferase, H3 lysine-9 specific 5 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q9H9B1] | Homo sapiens (human) |
Histone-lysine N-methyltransferase EHMT2 | A histone-lysine N-methyltransferase, H3 lysine-9 specific 3 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q96KQ7] | Homo sapiens (human) |
Histone-lysine N-methyltransferase EZH1 | A histone-lysine N-methyltransferase EZH1 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q92800] | Homo sapiens (human) |
Histone-lysine N-methyltransferase EZH2 | A histone-lysine N-methyltransferase EZH2 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q15910] | Homo sapiens (human) |
Compound | Definition | Classes | Roles |
---|---|---|---|
disulfiram | organic disulfide; organosulfur acaricide | angiogenesis inhibitor; antineoplastic agent; apoptosis inducer; EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor; EC 3.1.1.1 (carboxylesterase) inhibitor; EC 3.1.1.8 (cholinesterase) inhibitor; EC 5.99.1.2 (DNA topoisomerase) inhibitor; ferroptosis inducer; fungicide; NF-kappaB inhibitor | |
ebselen | ebselen : A benzoselenazole that is 1,2-benzoselenazol-3-one carrying an additional phenyl substituent at position 2. Acts as a mimic of glutathione peroxidase. | benzoselenazole | anti-inflammatory drug; antibacterial agent; anticoronaviral agent; antifungal agent; antineoplastic agent; antioxidant; apoptosis inducer; EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor; EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor; EC 1.3.1.8 [acyl-CoA dehydrogenase (NADP(+))] inhibitor; EC 1.8.1.12 (trypanothione-disulfide reductase) inhibitor; EC 2.5.1.7 (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) inhibitor; EC 2.7.10.1 (receptor protein-tyrosine kinase) inhibitor; EC 3.1.3.25 (inositol-phosphate phosphatase) inhibitor; EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor; EC 3.5.4.1 (cytosine deaminase) inhibitor; EC 5.1.3.2 (UDP-glucose 4-epimerase) inhibitor; enzyme mimic; ferroptosis inhibitor; genotoxin; hepatoprotective agent; neuroprotective agent; radical scavenger |
vorinostat | vorinostat : A dicarboxylic acid diamide comprising suberic (octanedioic) acid coupled to aniline and hydroxylamine. A histone deacetylase inhibitor, it is marketed under the name Zolinza for the treatment of cutaneous T cell lymphoma (CTCL). Vorinostat: A hydroxamic acid and anilide derivative that acts as a HISTONE DEACETYLASE inhibitor. It is used in the treatment of CUTANEOUS T-CELL LYMPHOMA and SEZARY SYNDROME. | dicarboxylic acid diamide; hydroxamic acid | antineoplastic agent; apoptosis inducer; EC 3.5.1.98 (histone deacetylase) inhibitor |
thiram | thiram : An organic disulfide that results from the formal oxidative dimerisation of N,N-dimethyldithiocarbamic acid. It is widely used as a fungicidal seed treatment. Thiram: A dithiocarbamate chemical, used commercially in the rubber processing industry and as a fungicide. In vivo studies indicate that it inactivates the enzyme GLUTATHIONE REDUCTASE. It has mutagenic activity and may induce chromosomal aberrations. | organic disulfide | antibacterial drug; antifungal agrochemical; antiseptic drug |
cystamine dihydrochloride | |||
cysteamine | cysteamine : An amine that consists of an ethane skeleton substituted with a thiol group at C-1 and an amino group at C-2. Cysteamine: A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS. | amine; thiol | geroprotector; human metabolite; mouse metabolite; radiation protective agent |
gliotoxin | gliotoxin : A pyrazinoindole with a disulfide bridge spanning a dioxo-substituted pyrazine ring; mycotoxin produced by several species of fungi. Gliotoxin: A fungal toxin produced by various species of Trichoderma, Gladiocladium fimbriatum, Aspergillus fumigatus, and Penicillium. It is used as an immunosuppressive agent. | dipeptide; organic disulfide; organic heterotetracyclic compound; pyrazinoindole | antifungal agent; EC 2.5.1.58 (protein farnesyltransferase) inhibitor; immunosuppressive agent; mycotoxin; proteasome inhibitor |
9,10-anthraquinone | 9,10-anthraquinone : An anthraquinone that is anthracene in which positions 9 and 10 have been oxidised to carbonyls. | anthraquinone | |
1,4-naphthoquinone | 1,4-naphthoquinone : The parent structure of the family of 1,4-naphthoquinones, in which the oxo groups of the quinone moiety are at positions 1 and 4 of the naphthalene ring. Derivatives have pharmacological properties. naphthoquinone : A polycyclic aromatic ketone metabolite of naphthalene. | 1,4-naphthoquinones | |
azacitidine | 5-azacytidine : An N-glycosyl-1,3,5-triazine that is 4-amino-1,3,5-triazin-2(1H)-one substituted by a beta-D-ribofuranosyl residue via an N-glycosidic linkage. An antineoplastic agent, it is used in the treatment of myeloid leukaemia. Azacitidine: A pyrimidine analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent. | N-glycosyl-1,3,5-triazine; nucleoside analogue | antineoplastic agent |
ninhydrin | ninhydrin : A member of the class of indanones that is indane-1,3-dione bearing two additional hydroxy substituents at position 2. Ninhydrin: 2,2-Dihydroxy-1H-indene-1,3-(2H)-dione. Reagent toxic to skin and mucus membranes. It is used in chemical assay for peptide bonds, i.e., protein determinations and has radiosensitizing properties. | aromatic ketone; beta-diketone; indanones; ketone hydrate | colour indicator; human metabolite |
diphenyldiselenide | diphenyldiselenide: structure given in first source | ||
benzeneseleninic acid | benzeneseleninic acid: structure given in first source | ||
sodium selenate | sodium selenate : An inorganic sodium salt having selenate as the counterion. | inorganic sodium salt | anticonvulsant; EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor; fertilizer |
2,2'-dipyridyl disulfide | 2,2'-dipyridyl disulfide: disulfide is an important moiety in this cpd aldrithiol : A member of the class of pyridines that is pyridine which is substituted by a pyridin-2-yldisulfanediyl group at position 2. It is a reagent used in molecular biology as an oxidizing agent. Also used in peptide synthesis and for detecting thiols. | organic disulfide; pyridines | oxidising agent |
glutathione disulfide | Glutathione Disulfide: A GLUTATHIONE dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized. | glutathione derivative; organic disulfide | Escherichia coli metabolite; mouse metabolite |
sinefungin | adenosines; non-proteinogenic alpha-amino acid | antifungal agent; antimicrobial agent | |
3-deazaneplanocin | 3-deazaneplanocin: S-adenosylhomocysteine hydrolase antagonist | ||
tanshinone | tanshinone: from root of Salvia miltiorrhiza Bunge; RN given refers to tanshinone I; cardioprotective agent and neuroprotective agent | abietane diterpenoid | anticoronaviral agent |
przewaquinone d | przewaquinone D: isolated from root of Salvia przewalskii; structure given in first source; RN given refers to the trans- isomer, przewaquinone D | ||
tanshinone ii a | tashinone IIA: a cardiovascular agent with antineoplastic activity; isolated from Salvia miltiorrhiza; structure in first source | abietane diterpenoid | |
bisdethiobis(methylthio)gliotoxin | bisdethiobis(methylthio)gliotoxin: structure given in first source; a platelet activating factor antagonist | ||
s-adenosylhomocysteine | S-adenosyl-L-homocysteine : An organic sulfide that is the S-adenosyl derivative of L-homocysteine. S-Adenosylhomocysteine: 5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. Formed from S-adenosylmethionine after transmethylation reactions. | adenosines; amino acid zwitterion; homocysteine derivative; homocysteines; organic sulfide | cofactor; EC 2.1.1.72 [site-specific DNA-methyltransferase (adenine-specific)] inhibitor; EC 2.1.1.79 (cyclopropane-fatty-acyl-phospholipid synthase) inhibitor; epitope; fundamental metabolite |
decitabine | 2'-deoxyribonucleoside | ||
ditiocarb sodium | organic molecular entity | ||
verticillins | verticillins: 3 antibiotics isolated from imperfect fungus Verticillium: verticillin A, verticillin B (mono-3-hydroxymethyl analog of verticillin A), & verticillin C (differs from verticillin B in that 1 of dioxopiperazine rings has a trisulfide rather than a disulfide bridge; active against gram-positive bacteria & mycobacteria but not against gram-negative bacteria & fungi; RN given refers to cpd with unknown MF; structure (verticillins A & B)) | ||
scutellarein | scutellarein : Flavone substituted with hydroxy groups at C-4', -5, -6 and -7. scutellarein: aglycone of scutellarin from Scutellaria baicalensis; carthamidin is 2S isomer of scutellarein; do not confuse with isoscutellarein and/or isocarthamidin which are respective regioisomers, or with the scutelarin protein | tetrahydroxyflavone | metabolite |
azodicarbonamide | organic molecular entity | ||
chetomin | |||
sgi-1027 | SGI-1027: inhibits DNA methyltransferase 1; structure in first source | ||
bix 01294 | piperidines | ||
unc 0638 | UNC 0638: inhibits lysine methyltransferases G9a and GLP; structure in first source | quinazolines | |
unc 0321 | 7-(2-(2-(dimethylamino)ethoxy)ethoxy)-6-methoxy-2-(4-methyl-1,4-diazepan-1-yl)-N-(1-methylpiperidin-4-yl)quinazolin-4-amine: a G9a antagonist; structure in first source | quinazolines | |
unc 0631 | N-(1-(cyclohexylmethyl)piperidin-4-yl)-2-(4-isopropyl-1,4-diazepan-1-yl)-6-methoxy-7-(3-(piperidin-1-yl)propoxy)quinazolin-4-amine: inhibits protein lysine methyltransferase G9a; structure in first source | ||
epz005687 | EPZ005687: inhibits EZH2 protein; structure in first source | indazoles | |
epz-6438 | tazemetostat: a histone methyltransferase EZH2 inhibitor with antineoplastic activity | ||
gsk-2816126 | GSK-2816126: inhibits EZH2 methyltransferase; structure in first source | piperazines; pyridines | |
gsk343 | GSK343 : A member of the class of indazoles that is 1-isopropyl-1H-indazole-4-carboxamide in which the nitrogen of the carboxamide group is substituted by a (6-methyl-2-oxo-4-propyl-1,2-dihydropyridin-3-yl)methyl group and in which the indazole ring is substituted at position 6 by a 2-(4-methylpiperazin-1-yl)pyridin-4-yl group. A highly potent and selective EZH2 inhibitor (IC50 = 4 nM). GSK343: an EZH2 methyltransferase inhibitor | aminopyridine; indazoles; N-alkylpiperazine; N-arylpiperazine; pyridone; secondary carboxamide | antineoplastic agent; apoptosis inducer; EC 2.1.1.43 (enhancer of zeste homolog 2) inhibitor |
1-[(1R)-1-(1-ethylsulfonyl-4-piperidinyl)ethyl]-N-[(4-methoxy-6-methyl-2-oxo-1H-pyridin-3-yl)methyl]-2-methyl-3-indolecarboxamide | (R)-1-(1-(1-(ethylsulfonyl)piperidin-4-yl)ethyl)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1H-indole-3-carboxamide: EZH2 inhibitor | indolecarboxamide | |
brd4770 | benzimidazoles | ||
6,7-dimethoxy-2-(pyrrolidin-1-yl)-n-(5-(pyrrolidin-1-yl)pentyl)quinazolin-4-amine | 6,7-dimethoxy-2-(pyrrolidin-1-yl)-N-(5-(pyrrolidin-1-yl)pentyl)quinazolin-4-amine: a SETD8 inhibitor; structure in first source |