Page last updated: 2024-12-09

1-(1-naphthalenylmethoxy)benzotriazole

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

1-(1-Naphthalenylmethoxy)benzotriazole, also known as **Tinuvin 326**, is a **UV absorber** commonly used in **polymer stabilization**.

**What it does:**

* **Absorbs UV radiation:** It acts as a sunblock for polymers, preventing them from degrading under exposure to ultraviolet light. This degradation can lead to discoloration, cracking, and loss of strength.
* **Protects against photo-oxidation:** It hinders the formation of free radicals that are generated by UV light, which can damage the polymer structure.

**Why it's important for research:**

* **Material science:** Tinuvin 326 is a valuable tool for researchers studying the degradation of polymers and developing new materials with enhanced UV resistance.
* **Polymer chemistry:** Understanding its mechanism of action helps chemists develop novel UV absorbers and improve the stability of existing polymers.
* **Environmental science:** Tinuvin 326's effectiveness in preventing polymer degradation has implications for the lifespan of plastic materials, contributing to reduced waste and environmental impact.

**Applications:**

* **Polymers:** It's widely used in a variety of polymers, including plastics, coatings, adhesives, and textiles.
* **Cosmetics:** Tinuvin 326 is a common ingredient in sunscreen lotions and cosmetics to protect the skin from UV damage.

**Note:** While Tinuvin 326 is an important research tool and a valuable industrial material, its potential environmental impact (especially as a micro-plastic contaminant) is an active area of investigation.

Cross-References

ID SourceID
PubMed CID973927
CHEMBL ID1539056
CHEBI ID109459

Synonyms (14)

Synonym
HMS1596I02
1-(1-naphthylmethoxy)-1h-1,2,3-benzotriazole
MLS000537934
smr000144171
CHEBI:109459
1-(naphthalen-1-ylmethoxy)benzotriazole
AKOS001052853
HMS2431M23
CHEMBL1539056
Q27188599
1-(1-naphthalenylmethoxy)benzotriazole
sr-01000283450
SR-01000283450-1
Z25939046
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
naphthalenesAny benzenoid aromatic compound having a skeleton composed of two ortho-fused benzene rings.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (20)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency56.23410.631035.7641100.0000AID504339
Chain A, Ferritin light chainEquus caballus (horse)Potency28.18385.623417.292931.6228AID485281
LuciferasePhotinus pyralis (common eastern firefly)Potency10.69100.007215.758889.3584AID588342
phosphopantetheinyl transferaseBacillus subtilisPotency39.81070.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency11.74680.004110.890331.5287AID504466; AID504467
TDP1 proteinHomo sapiens (human)Potency20.73290.000811.382244.6684AID686978; AID686979
TSHR proteinHomo sapiens (human)Potency151.01400.338119.046637.9330AID602292
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency5.62340.28189.721235.4813AID2326
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency8.91250.707936.904389.1251AID504333
P53Homo sapiens (human)Potency7.07950.07319.685831.6228AID504706
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency56.23410.035520.977089.1251AID504332
NPC intracellular cholesterol transporter 1 precursorHomo sapiens (human)Potency3.54810.01262.451825.0177AID485313
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency35.48130.001815.663839.8107AID894
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency8.19950.00419.984825.9290AID504444
ras-related protein Rab-9AHomo sapiens (human)Potency2.51190.00022.621531.4954AID485297
histone-lysine N-methyltransferase 2A isoform 2 precursorHomo sapiens (human)Potency15.84890.010323.856763.0957AID2662
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency0.98340.00798.23321,122.0200AID2546; AID2551
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency100.00006.309660.2008112.2020AID720707
TAR DNA-binding protein 43Homo sapiens (human)Potency14.12541.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (38)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (13)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (17)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (15)

Assay IDTitleYearJournalArticle
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (14.29)29.6817
2010's5 (71.43)24.3611
2020's1 (14.29)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.20

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.20 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.28 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.20)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]