Page last updated: 2024-08-07 18:37:27
Cyclin-dependent kinase 9
A cyclin-dependent kinase 9 that is encoded in the genome of human. [PRO:DNx, UniProtKB:P50750]
Synonyms
EC 2.7.11.22;
EC 2.7.11.23;
C-2K;
Cell division cycle 2-like protein kinase 4;
Cell division protein kinase 9;
Serine/threonine-protein kinase PITALRE;
Tat-associated kinase complex catalytic subunit
Research
Bioassay Publications (94)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 10 (10.64) | 29.6817 |
2010's | 63 (67.02) | 24.3611 |
2020's | 21 (22.34) | 2.80 |
Compounds (282)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
gw8510 | Homo sapiens (human) | IC50 | 0.5400 | 1 | 1 |
indirubin-3'-monoxime | Homo sapiens (human) | IC50 | 2.4000 | 1 | 1 |
nsc 664704 | Homo sapiens (human) | IC50 | 0.0640 | 1 | 1 |
nu6102 | Homo sapiens (human) | IC50 | 2.0900 | 3 | 3 |
dichlororibofuranosylbenzimidazole | Homo sapiens (human) | Ki | 0.3400 | 1 | 1 |
indirubin | Homo sapiens (human) | IC50 | 2.2000 | 1 | 1 |
staurosporine | Homo sapiens (human) | IC50 | 0.0474 | 9 | 9 |
staurosporine | Homo sapiens (human) | Ki | 0.0070 | 1 | 1 |
fascaplysine | Homo sapiens (human) | IC50 | 250.0000 | 1 | 1 |
cercosporamide | Homo sapiens (human) | IC50 | 0.2200 | 1 | 1 |
birb 796 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
cyc 202 | Homo sapiens (human) | IC50 | 0.7091 | 13 | 17 |
cyc 202 | Homo sapiens (human) | Ki | 0.7900 | 1 | 1 |
paullone | Homo sapiens (human) | IC50 | 0.8100 | 1 | 1 |
2H-pyrazolo[4,3-b]quinoxalin-3-amine | Homo sapiens (human) | IC50 | 14.1000 | 1 | 1 |
6-bromoindirubin-3'-oxime | Homo sapiens (human) | IC50 | 0.4500 | 1 | 1 |
purvalanol a | Homo sapiens (human) | IC50 | 0.0497 | 1 | 3 |
2-methyl-5-(4-methylanilino)-1,3-benzothiazole-4,7-dione | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
cgp 60474 | Homo sapiens (human) | IC50 | 0.0130 | 1 | 1 |
cgp 74514a | Homo sapiens (human) | IC50 | 1.4000 | 1 | 1 |
1,4-dimethoxy-10H-acridine-9-thione | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | IC50 | 0.1078 | 10 | 10 |
bms 387032 | Homo sapiens (human) | Ki | 0.0040 | 1 | 1 |
harmine | Homo sapiens (human) | IC50 | 0.7200 | 1 | 1 |
sulfuretin | Homo sapiens (human) | IC50 | 2.1600 | 1 | 1 |
wogonin | Homo sapiens (human) | IC50 | 0.1920 | 4 | 4 |
alvocidib | Homo sapiens (human) | IC50 | 0.0209 | 17 | 17 |
alvocidib | Homo sapiens (human) | Ki | 0.0030 | 2 | 2 |
su 9516 | Homo sapiens (human) | IC50 | 1.5000 | 1 | 1 |
arcyriaflavin a | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
palbociclib | Homo sapiens (human) | IC50 | 17.6517 | 6 | 6 |
palbociclib | Homo sapiens (human) | Ki | 0.3640 | 1 | 1 |
olomoucine ii | Homo sapiens (human) | IC50 | 0.8150 | 1 | 1 |
cyc 116 | Homo sapiens (human) | Ki | 0.4800 | 2 | 2 |
cvt 313 | Homo sapiens (human) | IC50 | 2.3000 | 1 | 1 |
leucettamine b | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
nu 6140 | Homo sapiens (human) | IC50 | 5.1000 | 1 | 1 |
pik 75 | Homo sapiens (human) | IC50 | 0.0014 | 2 | 2 |
meridianin a | Homo sapiens (human) | IC50 | 2.4000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | IC50 | 0.0010 | 2 | 2 |
at 7519 | Homo sapiens (human) | IC50 | 0.0094 | 9 | 9 |
at 7519 | Homo sapiens (human) | Ki | 0.1000 | 1 | 1 |
cgp 57380 | Homo sapiens (human) | Ki | 10.0000 | 1 | 1 |
pha 767491 | Homo sapiens (human) | IC50 | 0.0280 | 4 | 4 |
5,7-dihydroxy-2-methyl-8-(4-(3-hydroxy-1-methyl)-piperidinyl)-4h-1-benzopyran-4-one | Homo sapiens (human) | IC50 | 0.3000 | 3 | 3 |
pha 848125 | Homo sapiens (human) | IC50 | 7.7000 | 1 | 1 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | IC50 | 0.0027 | 3 | 3 |
p276-00 | Homo sapiens (human) | IC50 | 0.0200 | 3 | 3 |
meriolin 3 | Homo sapiens (human) | IC50 | 0.0060 | 3 | 3 |
cink4 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
ldc067 | Homo sapiens (human) | IC50 | 0.0905 | 4 | 4 |
bs 194 | Homo sapiens (human) | IC50 | 0.0900 | 1 | 1 |
(R)-DRF053 | Homo sapiens (human) | IC50 | 8.0000 | 1 | 1 |
fit-039 | Homo sapiens (human) | IC50 | 5.8000 | 4 | 4 |
ribociclib | Homo sapiens (human) | IC50 | 1.1228 | 4 | 4 |
bay 1000394 | Homo sapiens (human) | IC50 | 0.0050 | 7 | 7 |
pha 793887 | Homo sapiens (human) | IC50 | 0.1380 | 1 | 1 |
abt-348 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | IC50 | 0.0693 | 6 | 6 |
abemaciclib | Homo sapiens (human) | Ki | 0.0570 | 1 | 1 |
dinaciclib | Homo sapiens (human) | IC50 | 0.0227 | 19 | 19 |
bs-181 | Homo sapiens (human) | IC50 | 2.7233 | 3 | 3 |
on123300 | Homo sapiens (human) | IC50 | 0.1170 | 1 | 1 |
[4-amino-2-[2-methoxy-4-(4-methyl-1-piperazinyl)anilino]-5-thiazolyl]-(2,6-dichlorophenyl)methanone | Homo sapiens (human) | IC50 | 0.3170 | 1 | 1 |
ldc4297 | Homo sapiens (human) | IC50 | 1.7110 | 1 | 1 |
ly2857785 | Homo sapiens (human) | IC50 | 0.0110 | 1 | 1 |
THZ531 | Homo sapiens (human) | IC50 | 0.5135 | 2 | 2 |
can 508 | Homo sapiens (human) | IC50 | 17.3906 | 7 | 16 |
can 508 | Homo sapiens (human) | Ki | 0.3500 | 1 | 1 |
((5z)5-(1,3-benzodioxol-5-yl)methylene-2-phenylamino-3,5-dihydro-4h-imidazol-4-one) | Homo sapiens (human) | IC50 | 14.0000 | 2 | 2 |
ro 3306 | Homo sapiens (human) | IC50 | 14.5000 | 1 | 1 |
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
fasudil | Homo sapiens (human) | Kd | 4.2510 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | Kd | 0.1000 | 2 | 2 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 10.3533 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
canertinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
cyc 202 | Homo sapiens (human) | Kd | 7.4300 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 15.6500 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
pd 173955 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 0.0620 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 0.0066 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
palbociclib | Homo sapiens (human) | Kd | 9.4920 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 0.4700 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 9.9010 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 1.3550 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 1.9000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 13.2790 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pik 75 | Homo sapiens (human) | Kd | 0.0041 | 1 | 1 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 0.9880 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 1.8000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 0.0330 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
at 7519 | Homo sapiens (human) | Kd | 0.0064 | 2 | 2 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 0.1900 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 12.0000 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 1.3540 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 3.6090 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 19.4000 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 0.0010 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 0.3200 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 0.7410 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 1.7900 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 15.8000 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 3.7080 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 0.2180 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 1.0060 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 0.1740 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 0.0070 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 1.8700 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 1.6400 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 0.0810 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
Drugs with Other Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
cyc 202 | Homo sapiens (human) | INH | 24.5000 | 1 | 1 |
olomoucine ii | Homo sapiens (human) | INH | 11.4000 | 1 | 1 |
Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures.European journal of medicinal chemistry, , Feb-15, Volume: 164, 2019
How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?Journal of medicinal chemistry, , 10-25, Volume: 61, Issue:20, 2018
Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines.Journal of medicinal chemistry, , 03-09, Volume: 60, Issue:5, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Design, synthesis and biological evaluation of pteridine-7(8H)-one derivatives as potent and selective CDK4/6 inhibitors.Bioorganic & medicinal chemistry letters, , 11-15, Volume: 76, 2022
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Discovery of 3-Benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors.Journal of medicinal chemistry, , 09-13, Volume: 61, Issue:17, 2018
Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases.Journal of medicinal chemistry, , May-23, Volume: 56, Issue:10, 2013
Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells.Journal of medicinal chemistry, , Apr-09, Volume: 52, Issue:7, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation.European journal of medicinal chemistry, , Mar-01, Volume: 189, 2020
Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
Recent advances in the development of cyclin-dependent kinase 7 inhibitors.European journal of medicinal chemistry, , Dec-01, Volume: 183, 2019
A β-glucuronidase-responsive albumin-binding prodrug for potential selective kinase inhibitor-based cancer chemotherapy.European journal of medicinal chemistry, , Oct-05, Volume: 158, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases.European journal of medicinal chemistry, , Volume: 61, 2013
Synthesis and biological evaluation of selective and potent cyclin-dependent kinase inhibitors.European journal of medicinal chemistry, , Volume: 56, 2012
Pyrazolo[4,3-d]pyrimidine bioisostere of roscovitine: evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity.Journal of medicinal chemistry, , Apr-28, Volume: 54, Issue:8, 2011
A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration.Journal of medicinal chemistry, , Dec-23, Volume: 53, Issue:24, 2010
Pyrazolo[1,5-a]-1,3,5-triazine as a purine bioisostere: access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogue.Journal of medicinal chemistry, , Feb-12, Volume: 52, Issue:3, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Discovery of MFH290: A Potent and Highly Selective Covalent Inhibitor for Cyclin-Dependent Kinase 12/13.Journal of medicinal chemistry, , 07-09, Volume: 63, Issue:13, 2020
Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.European journal of medicinal chemistry, , Dec-15, Volume: 142, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Modifications of the isonipecotic acid fragment of SNS-032: analogs with improved permeability and lower efflux ratio.Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 18, Issue:23, 2008
A diaminocyclohexyl analog of SNS-032 with improved permeability and bioavailability properties.Bioorganic & medicinal chemistry letters, , Nov-01, Volume: 18, Issue:21, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives.Journal of medicinal chemistry, , 10-27, Volume: 65, Issue:20, 2022
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Design of wogonin-inspired selective cyclin-dependent kinase 9 (CDK9) inhibitors with potent in vitro and in vivo antitumor activity.European journal of medicinal chemistry, , Sep-15, Volume: 178, 2019
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Current progress and novel strategies that target CDK12 for drug discovery.European journal of medicinal chemistry, , Oct-05, Volume: 240, 2022
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency.European journal of medicinal chemistry, , Aug-01, Volume: 199, 2020
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
Recent advances in the development of cyclin-dependent kinase 7 inhibitors.European journal of medicinal chemistry, , Dec-01, Volume: 183, 2019
[no title available]Journal of medicinal chemistry, , 02-22, Volume: 61, Issue:4, 2018
Design of Novel 3-Pyrimidinylazaindole CDK2/9 Inhibitors with Potent In Vitro and In Vivo Antitumor Efficacy in a Triple-Negative Breast Cancer Model.Journal of medicinal chemistry, , 12-14, Volume: 60, Issue:23, 2017
Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.European journal of medicinal chemistry, , Dec-15, Volume: 142, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
[no title available]MedChemComm, , Mar-01, Volume: 6, Issue:3, 2015
Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity.Nature chemical biology, , Volume: 4, Issue:6, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of a novel series of imidazo[1',2':1,6]pyrido[2,3-d]pyrimidin derivatives as potent cyclin-dependent kinase 4/6 inhibitors.European journal of medicinal chemistry, , May-01, Volume: 193, 2020
[no title available]Journal of medicinal chemistry, , 03-26, Volume: 63, Issue:6, 2020
[no title available]European journal of medicinal chemistry, , Mar-01, Volume: 165, 2019
How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?Journal of medicinal chemistry, , 10-25, Volume: 61, Issue:20, 2018
Highly Potent, Selective, and Orally Bioavailable 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation.Journal of medicinal chemistry, , 03-09, Volume: 60, Issue:5, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.European journal of medicinal chemistry, , Mar-03, Volume: 110, 2016
Selectivity data: assessment, predictions, concordance, and implications.Journal of medicinal chemistry, , Sep-12, Volume: 56, Issue:17, 2013
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors.Journal of medicinal chemistry, , Jun-10, Volume: 53, Issue:11, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9.Bioorganic & medicinal chemistry, , Oct-01, Volume: 23, Issue:19, 2015
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors.European journal of medicinal chemistry, , Apr-05, Volume: 215, 2021
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.Journal of medicinal chemistry, , 05-09, Volume: 62, Issue:9, 2019
Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.European journal of medicinal chemistry, , Dec-15, Volume: 142, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.Bioorganic & medicinal chemistry letters, , Sep-01, Volume: 25, Issue:17, 2015
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery.Journal of medicinal chemistry, , Jan-22, Volume: 52, Issue:2, 2009
A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity.Nature chemical biology, , Volume: 4, Issue:6, 2008
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
[no title available]Journal of medicinal chemistry, , 02-22, Volume: 61, Issue:4, 2018
A chromatography-free isolation of rohitukine from leaves of Dysoxylum binectariferum: Evaluation for in vitro cytotoxicity, Cdk inhibition and physicochemical properties.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 26, Issue:15, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?Journal of medicinal chemistry, , 10-25, Volume: 61, Issue:20, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.Journal of medicinal chemistry, , 05-09, Volume: 62, Issue:9, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorganic & medicinal chemistry, , 03-01, Volume: 27, Issue:5, 2019
[no title available]Journal of medicinal chemistry, , 02-22, Volume: 61, Issue:4, 2018
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Design of Novel 3-Pyrimidinylazaindole CDK2/9 Inhibitors with Potent In Vitro and In Vivo Antitumor Efficacy in a Triple-Negative Breast Cancer Model.Journal of medicinal chemistry, , 12-14, Volume: 60, Issue:23, 2017
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex.Journal of medicinal chemistry, , Feb-28, Volume: 51, Issue:4, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.European journal of medicinal chemistry, , Jan-27, Volume: 108, 2016
Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Kinase Inhibitors as Underexplored Antiviral Agents.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer.European journal of medicinal chemistry, , Nov-01, Volume: 181, 2019
Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7 H-pyrrolo[2,3- d]pyrimidin-2-yl)amino)phenyl)- N8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant CancerJournal of medicinal chemistry, , 04-12, Volume: 61, Issue:7, 2018
How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?Journal of medicinal chemistry, , 10-25, Volume: 61, Issue:20, 2018
Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate.Bioorganic & medicinal chemistry letters, , 08-01, Volume: 27, Issue:15, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Development and Therapeutic Potential of NUAKs Inhibitors.Journal of medicinal chemistry, , 01-14, Volume: 64, Issue:1, 2021
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.Journal of medicinal chemistry, , 05-09, Volume: 62, Issue:9, 2019
Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures.European journal of medicinal chemistry, , Feb-15, Volume: 164, 2019
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing.Bioorganic & medicinal chemistry, , Mar-01, Volume: 18, Issue:5, 2010
Discovery of a novel series of imidazo[1',2':1,6]pyrido[2,3-d]pyrimidin derivatives as potent cyclin-dependent kinase 4/6 inhibitors.European journal of medicinal chemistry, , May-01, Volume: 193, 2020
[no title available]Journal of medicinal chemistry, , 03-26, Volume: 63, Issue:6, 2020
Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy.European journal of medicinal chemistry, , Mar-25, Volume: 148, 2018
How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?Journal of medicinal chemistry, , 10-25, Volume: 61, Issue:20, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.European journal of medicinal chemistry, , Jan-27, Volume: 108, 2016
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
[no title available]Journal of medicinal chemistry, , 07-14, Volume: 65, Issue:13, 2022
From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy.Journal of medicinal chemistry, , 05-12, Volume: 65, Issue:9, 2022
Current progress and novel strategies that target CDK12 for drug discovery.European journal of medicinal chemistry, , Oct-05, Volume: 240, 2022
[no title available]Journal of medicinal chemistry, , 10-14, Volume: 64, Issue:19, 2021
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors.European journal of medicinal chemistry, , Apr-05, Volume: 215, 2021
Discovery of Journal of medicinal chemistry, , 09-09, Volume: 64, Issue:17, 2021
Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.Journal of medicinal chemistry, , 11-25, Volume: 63, Issue:22, 2020
Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib.European journal of medicinal chemistry, , Jun-15, Volume: 172, 2019
Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.Journal of medicinal chemistry, , 05-09, Volume: 62, Issue:9, 2019
Recent advances in the development of cyclin-dependent kinase 7 inhibitors.European journal of medicinal chemistry, , Dec-01, Volume: 183, 2019
3,5,7-Substituted Pyrazolo[4,3- d]pyrimidine Inhibitors of Cyclin-Dependent Kinases and Their Evaluation in Lymphoma Models.Journal of medicinal chemistry, , 05-09, Volume: 62, Issue:9, 2019
Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells.Bioorganic & medicinal chemistry, , 07-23, Volume: 26, Issue:12, 2018
Novel compounds with potent CDK9 inhibitory activity for the treatment of myeloma.Bioorganic & medicinal chemistry letters, , 02-15, Volume: 28, Issue:4, 2018
Non-kinase targets of protein kinase inhibitors.Nature reviews. Drug discovery, , Volume: 16, Issue:6, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.European journal of medicinal chemistry, , Jan-27, Volume: 108, 2016
Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9.MedChemComm, , Aug-01, Volume: 7, Issue:8, 2016
Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.Journal of medicinal chemistry, , 10-13, Volume: 59, Issue:19, 2016
5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.European journal of medicinal chemistry, , Mar-03, Volume: 110, 2016
CDK7 Inhibitors in Cancer Therapy: The Sweet Smell of Success?Journal of medicinal chemistry, , 07-23, Volume: 63, Issue:14, 2020
Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.European journal of medicinal chemistry, , Jan-27, Volume: 108, 2016
5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.European journal of medicinal chemistry, , Mar-03, Volume: 110, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation.European journal of medicinal chemistry, , Mar-01, Volume: 189, 2020
Discovery of novel CDK inhibitors via scaffold hopping from CAN508.Bioorganic & medicinal chemistry letters, , 05-01, Volume: 28, Issue:8, 2018
Novel arylazopyrazole inhibitors of cyclin-dependent kinases.Bioorganic & medicinal chemistry, , May-01, Volume: 23, Issue:9, 2015
Arylazopyrazole AAP1742 inhibits CDKs and induces apoptosis in multiple myeloma cells via Mcl-1 downregulation.Chemical biology & drug design, , Volume: 84, Issue:4, 2014
Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.Journal of medicinal chemistry, , Feb-14, Volume: 56, Issue:3, 2013
The selective P-TEFb inhibitor CAN508 targets angiogenesis.European journal of medicinal chemistry, , Volume: 46, Issue:9, 2011
4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects.Journal of medicinal chemistry, , Nov-02, Volume: 49, Issue:22, 2006
Chemical synthesis and biological validation of immobilized protein kinase inhibitory Leucettines.European journal of medicinal chemistry, , Volume: 62, 2013
Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B.Journal of medicinal chemistry, , Nov-08, Volume: 55, Issue:21, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Enables
This protein enables 15 target(s):
Target | Category | Definition |
RNA polymerase II cis-regulatory region sequence-specific DNA binding | molecular function | Binding to a specific upstream regulatory DNA sequence (transcription factor recognition sequence or binding site) located in cis relative to the transcription start site (i.e., on the same strand of DNA) of a gene transcribed by RNA polymerase II. [GOC:txnOH-2018] |
transcription coactivator binding | molecular function | Binding to a transcription coactivator, a protein involved in positive regulation of transcription via protein-protein interactions with transcription factors and other proteins that positively regulate transcription. Transcription coactivators do not bind DNA directly, but rather mediate protein-protein interactions between activating transcription factors and the basal transcription machinery. [GOC:krc] |
DNA binding | molecular function | Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid). [GOC:dph, GOC:jl, GOC:tb, GOC:vw] |
chromatin binding | molecular function | Binding to chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase. [GOC:jl, ISBN:0198506732, PMID:20404130] |
transcription elongation factor activity | molecular function | A molecular function that stimulates the elongation properties of the RNA polymerase during the elongation phase of transcription. A subclass of transcription elongation factors enable the transition from transcription initiation to elongation, while another class rescue stalled RNA polymerases. [GOC:txnOH-2018, PMID:23878398, PMID:28892040] |
protein kinase activity | molecular function | Catalysis of the phosphorylation of an amino acid residue in a protein, usually according to the reaction: a protein + ATP = a phosphoprotein + ADP. [PMID:25399640] |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
cyclin-dependent protein serine/threonine kinase activity | molecular function | Cyclin-dependent catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:pr, GOC:rn, PMID:7877684, PMID:9841670] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
RNA polymerase II CTD heptapeptide repeat kinase activity | molecular function | Catalysis of the reaction: ATP + RNA polymerase II large subunit CTD heptapeptide repeat (consensus YSPTSPS) = ADP + H+ + phosphorylated RNA polymerase II. [EC:2.7.11.23, GOC:mah, PMID:28248323] |
kinase activity | molecular function | Catalysis of the transfer of a phosphate group, usually from ATP, to a substrate molecule. [ISBN:0198506732] |
protein kinase binding | molecular function | Binding to a protein kinase, any enzyme that catalyzes the transfer of a phosphate group, usually from ATP, to a protein substrate. [GOC:jl] |
7SK snRNA binding | molecular function | Binding to a 7SK small nuclear RNA (7SK snRNA). [GOC:nhn, PMID:21853533] |
protein serine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate. [RHEA:17989] |
Located In
This protein is located in 5 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
nucleoplasm | cellular component | That part of the nuclear content other than the chromosomes or the nucleolus. [GOC:ma, ISBN:0124325653] |
membrane | cellular component | A lipid bilayer along with all the proteins and protein complexes embedded in it and attached to it. [GOC:dos, GOC:mah, ISBN:0815316194] |
PML body | cellular component | A class of nuclear body; they react against SP100 auto-antibodies (PML, promyelocytic leukemia); cells typically contain 10-30 PML bodies per nucleus; alterations in the localization of PML bodies occurs after viral infection. [GOC:ma, PMID:10944585] |
cytoplasmic ribonucleoprotein granule | cellular component | A ribonucleoprotein granule located in the cytoplasm. [GOC:bf, GOC:PARL, PMID:15121898] |
Active In
This protein is active in 1 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
Part Of
This protein is part of 3 target(s):
Target | Category | Definition |
cyclin/CDK positive transcription elongation factor complex | cellular component | A transcription elongation factor complex that facilitates the transition from abortive to productive elongation by phosphorylating the CTD domain of the large subunit of DNA-directed RNA polymerase II, holoenzyme. Contains a cyclin and a cyclin-dependent protein kinase catalytic subunit. [GOC:bhm, GOC:vw, PMID:10766736, PMID:16721054, PMID:17079683, PMID:19328067, PMID:7759473] |
transcription elongation factor complex | cellular component | Any protein complex that interacts with RNA polymerase II to increase (positive transcription elongation factor) or reduce (negative transcription elongation factor) the rate of transcription elongation. [GOC:jl] |
P-TEFb complex | cellular component | A dimeric positive transcription elongation factor complex b that comprises a cyclin-dependent kinase containing the catalytic subunit, Cdk9, and a regulatory subunit, cyclin T. [GOC:mah, GOC:vw, PMID:16721054, PMID:19328067, Wikipedia:P-TEFb] |
Involved In
This protein is involved in 19 target(s):
Target | Category | Definition |
DNA repair | biological process | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. [PMID:11563486] |
regulation of DNA repair | biological process | Any process that modulates the frequency, rate or extent of DNA repair. [GOC:go_curators] |
transcription by RNA polymerase II | biological process | The synthesis of RNA from a DNA template by RNA polymerase II (RNAP II), originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs). [GOC:jl, GOC:txnOH, ISBN:0321000382] |
transcription initiation at RNA polymerase II promoter | biological process | A transcription initiation process that takes place at a RNA polymerase II gene promoter. Messenger RNAs (mRNA) genes, as well as some non-coding RNAs, are transcribed by RNA polymerase II. [GOC:mah, GOC:txnOH] |
transcription elongation by RNA polymerase II | biological process | The extension of an RNA molecule after transcription initiation and promoter clearance at an RNA polymerase II promoter by the addition of ribonucleotides catalyzed by RNA polymerase II. [GOC:mah, GOC:txnOH] |
cell population proliferation | biological process | The multiplication or reproduction of cells, resulting in the expansion of a cell population. [GOC:mah, GOC:mb] |
replication fork processing | biological process | The process in which a DNA replication fork that has stalled is restored to a functional state and replication is restarted. The stalling may be due to DNA damage, DNA secondary structure, bound proteins, dNTP shortage, or other causes. [GOC:vw, PMID:11459955, PMID:15367656, PMID:17660542] |
regulation of mRNA 3'-end processing | biological process | Any process that modulates the frequency, rate or extent of mRNA 3'-end processing, any process involved in forming the mature 3' end of an mRNA molecule. [GOC:mah] |
positive regulation of transcription elongation by RNA polymerase II | biological process | Any process that activates or increases the frequency, rate or extent of transcription elongation, the extension of an RNA molecule after transcription initiation and promoter clearance by the addition of ribonucleotides, catalyzed by RNA polymerase II. [GOC:mah, GOC:txnOH] |
positive regulation by host of viral transcription | biological process | Any process in which a host organism activates or increases the frequency, rate or extent of viral transcription, the synthesis of either RNA on a template of DNA or DNA on a template of RNA. [GOC:jl] |
positive regulation of transcription by RNA polymerase II | biological process | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. [GOC:go_curators, GOC:txnOH] |
regulation of muscle cell differentiation | biological process | Any process that modulates the frequency, rate or extent of muscle cell differentiation. [CL:0000187, GOC:ai] |
nucleus localization | biological process | Any process in which the nucleus is transported to, and/or maintained in, a specific location within the cell. [GOC:ai] |
regulation of cell cycle | biological process | Any process that modulates the rate or extent of progression through the cell cycle. [GOC:ai, GOC:dph, GOC:tb] |
cellular response to cytokine stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cytokine stimulus. [GOC:mah] |
negative regulation of protein localization to chromatin | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of protein localization to chromatin. [PMID:20889714, PMID:29899453] |
positive regulation of protein localization to chromatin | biological process | Any process that activates or increases the frequency, rate or extent of protein localization to chromatin. [PMID:20889714, PMID:29899453] |
transcription elongation-coupled chromatin remodeling | biological process | A chromatin remodeling process that reestablishes the chromatin structure following the passage of RNA polymerase II during transcription elongation, thus preventing cryptic transcription initiation. [PMID:22922743, PMID:28053344] |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |