Page last updated: 2024-08-07 23:46:33
Activin receptor type-1
An activin receptor type-1 that is encoded in the genome of human. [PRO:CNA, UniProtKB:Q04771]
Synonyms
EC 2.7.11.30;
Activin receptor type I;
ACTR-I;
Activin receptor-like kinase 2;
ALK-2;
Serine/threonine-protein kinase receptor R1;
SKR1;
TGF-B superfamily receptor type I;
TSR-I
Research
Bioassay Publications (17)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (11.76) | 29.6817 |
2010's | 11 (64.71) | 24.3611 |
2020's | 4 (23.53) | 2.80 |
Compounds (245)
Drugs with Inhibition Measurements
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 20.0000 | 3 | 4 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | Kd | 0.4700 | 2 | 2 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 0.6997 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
canertinib | Homo sapiens (human) | Kd | 11.1333 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
pd 173955 | Homo sapiens (human) | Kd | 0.1600 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 9.3750 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 10.4133 | 3 | 3 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
zd 6474 | Homo sapiens (human) | Kd | 10.1000 | 3 | 3 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 11.2667 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 18.0000 | 4 | 5 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 5.9000 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 11.2667 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 0.3960 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 16.7000 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 16.1210 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 0.0040 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 21.6000 | 2 | 3 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 15.0700 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 0.5270 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 15.2200 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 0.0290 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 0.2490 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pha 848125 | Homo sapiens (human) | Kd | 0.4770 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 0.7300 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 0.1210 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 0.4580 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 0.0220 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 3.7260 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 0.0390 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 0.0780 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 0.2220 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 1.0075 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 0.0040 | 1 | 1 |
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors.ACS chemical biology, , Feb-19, Volume: 5, Issue:2, 2010
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 23, Issue:11, 2013
In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors.ACS chemical biology, , Feb-19, Volume: 5, Issue:2, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Targeting ALK2: An Open Science Approach to Developing Therapeutics for the Treatment of Diffuse Intrinsic Pontine Glioma.Journal of medicinal chemistry, , 05-14, Volume: 63, Issue:9, 2020
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Discovery of 3-(4-sulfamoylnaphthyl)pyrazolo[1,5-a]pyrimidines as potent and selective ALK2 inhibitors.Bioorganic & medicinal chemistry letters, , 11-01, Volume: 28, Issue:20, 2018
Identification of the First Selective Activin Receptor-Like Kinase 1 Inhibitor, a Reversible Version of L-783277.Journal of medicinal chemistry, , 02-23, Volume: 60, Issue:4, 2017
Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 23, Issue:11, 2013
In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors.ACS chemical biology, , Feb-19, Volume: 5, Issue:2, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Probing Embryonic Development Enables the Discovery of Unique Small-Molecule Bone Morphogenetic Protein Potentiators.Journal of medicinal chemistry, , 03-10, Volume: 65, Issue:5, 2022
Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 23, Issue:11, 2013
Inhibition of ALK2 with bicyclic pyridyllactams.Bioorganic & medicinal chemistry letters, , 01-01, Volume: 55, 2022
Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.Journal of medicinal chemistry, , Oct-09, Volume: 57, Issue:19, 2014
Medicinal Chemistry Approaches to Heart Regeneration.Journal of medicinal chemistry, , Dec-24, Volume: 58, Issue:24, 2015
Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 23, Issue:11, 2013
In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors.ACS chemical biology, , Feb-19, Volume: 5, Issue:2, 2010
Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Enables
This protein enables 15 target(s):
Target | Category | Definition |
protein kinase activity | molecular function | Catalysis of the phosphorylation of an amino acid residue in a protein, usually according to the reaction: a protein + ATP = a phosphoprotein + ADP. [PMID:25399640] |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
transmembrane receptor protein serine/threonine kinase activity | molecular function | Combining with a signal and transmitting the signal from one side of the membrane to the other to initiate a change in cell activity by catalysis of the reaction: ATP protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [EC:2.7.11.30] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
peptide hormone binding | molecular function | Binding to a peptide with hormonal activity in animals. [GOC:jl, ISBN:0198506732] |
protein homodimerization activity | molecular function | Binding to an identical protein to form a homodimer. [GOC:jl] |
cadherin binding | molecular function | Binding to cadherin, a type I membrane protein involved in cell adhesion. [GOC:bf] |
SMAD binding | molecular function | Binding to a SMAD signaling protein. [GOC:ai] |
metal ion binding | molecular function | Binding to a metal ion. [GOC:ai] |
activin binding | molecular function | Binding to activin, a dimer of inhibin-beta subunits. [GOC:jid, GOC:mah] |
transforming growth factor beta binding | molecular function | Binding to TGF-beta, transforming growth factor beta, a multifunctional peptide that controls proliferation, differentiation and other functions in many cell types. [ISBN:0198506732] |
BMP receptor activity | molecular function | Combining with a member of the bone morphogenetic protein (BMP) family, and transmitting a signal across the plasma membrane to initiate a change in cell activity. [GOC:BHF, GOC:dos] |
protein tyrosine kinase binding | molecular function | Binding to protein tyrosine kinase. [PMID:25499537] |
transforming growth factor beta receptor activity, type I | molecular function | Combining with a complex of transforming growth factor beta and a type II TGF-beta receptor to initiate a change in cell activity; upon binding, acts as a downstream transducer of TGF-beta signals. [GOC:mah, Reactome:R-HSA-170846] |
Located In
This protein is located in 2 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
apical part of cell | cellular component | The region of a polarized cell that forms a tip or is distal to a base. For example, in a polarized epithelial cell, the apical region has an exposed surface and lies opposite to the basal lamina that separates the epithelium from other tissue. [GOC:mah, ISBN:0815316194] |
Active In
This protein is active in 1 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
Part Of
This protein is part of 2 target(s):
Target | Category | Definition |
activin receptor complex | cellular component | A protein complex that acts as an activin receptor. Heterodimeric activin receptors, comprising one Type I activin receptor and one Type II receptor polypeptide, and heterotrimeric receptors have been observed. [PMID:8307945, PMID:8622651] |
BMP receptor complex | cellular component | A protein complex that acts as a receptor for bone morphogenetic proteins (BMPs); a homo- or heterodimer of type I and/or type II BMP receptor subunits. [GOC:mah, GOC:mh, PMID:19377468] |
Involved In
This protein is involved in 41 target(s):
Target | Category | Definition |
branching involved in blood vessel morphogenesis | biological process | The process of coordinated growth and sprouting of blood vessels giving rise to the organized vascular system. [GOC:dph] |
in utero embryonic development | biological process | The process whose specific outcome is the progression of the embryo in the uterus over time, from formation of the zygote in the oviduct, to birth. An example of this process is found in Mus musculus. [GOC:go_curators, GOC:mtg_sensu] |
gastrulation with mouth forming second | biological process | A gastrulation process in which the initial invagination becomes the anus and the mouth forms second. [GOC:go_curators, GOC:mtg_sensu] |
mesoderm formation | biological process | The process that gives rise to the mesoderm. This process pertains to the initial formation of the structure from unspecified parts. [GOC:go_curators] |
neural crest cell migration | biological process | The characteristic movement of cells from the dorsal ridge of the neural tube to a variety of locations in a vertebrate embryo. [GOC:ascb_2009, GOC:dph, GOC:tb, ISBN:0878932437] |
acute inflammatory response | biological process | Inflammation which comprises a rapid, short-lived, relatively uniform response to acute injury or antigenic challenge and is characterized by accumulations of fluid, plasma proteins, and granulocytic leukocytes. An acute inflammatory response occurs within a matter of minutes or hours, and either resolves within a few days or becomes a chronic inflammatory response. [GO_REF:0000022, GOC:add, ISBN:0781735149] |
embryonic heart tube morphogenesis | biological process | The process in which the anatomical structures of the embryonic heart tube are generated and organized. The embryonic heart tube is an epithelial tube that will give rise to the mature heart. [GOC:mtg_heart] |
atrioventricular valve morphogenesis | biological process | The process in which the structure of the atrioventricular valve is generated and organized. [GOC:mtg_heart] |
mitral valve morphogenesis | biological process | The process in which the structure of the mitral valve is generated and organized. [GOC:mtg_heart] |
endocardial cushion formation | biological process | The developmental process pertaining to the initial formation of an endocardial cushion. The endocardial cushion is a specialized region of mesenchymal cells that will give rise to the heart septa and valves. [GOC:mtg_heart, PMID:15797462] |
endocardial cushion fusion | biological process | The cell-cell adhesion process of mesenchymal cardiac cushion cells that contributes to the process of cushion shaping. [GOC:mtg_heart] |
atrial septum primum morphogenesis | biological process | The process in which anatomical structure of an atrial septum primum is generated and organized. [GOC:mtg_heart] |
transforming growth factor beta receptor signaling pathway | biological process | The series of molecular signals initiated by an extracellular ligand binding to a transforming growth factor beta receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:BHF, GOC:mah, GOC:signaling] |
germ cell development | biological process | The process whose specific outcome is the progression of an immature germ cell over time, from its formation to the mature structure (gamete). A germ cell is any reproductive cell in a multicellular organism. [GOC:go_curators] |
determination of left/right symmetry | biological process | The establishment of an organism's body plan or part of an organism with respect to the left and right halves. The pattern can either be symmetric, such that the halves are mirror images, or asymmetric where the pattern deviates from this symmetry. [GOC:dph, GOC:jid] |
negative regulation of signal transduction | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of signal transduction. [GOC:sm] |
regulation of ossification | biological process | Any process that modulates the frequency, rate or extent of ossification, the formation of bone or of a bony substance or the conversion of fibrous tissue or of cartilage into bone or a bony substance. [GOC:go_curators] |
positive regulation of cell migration | biological process | Any process that activates or increases the frequency, rate or extent of cell migration. [GOC:go_curators] |
positive regulation of bone mineralization | biological process | Any process that activates or increases the frequency, rate or extent of bone mineralization. [GOC:go_curators] |
BMP signaling pathway | biological process | The series of molecular signals initiated by the binding of a member of the BMP (bone morphogenetic protein) family to a receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:signaling, ISBN:0878932437, PMID:17428827] |
activin receptor signaling pathway | biological process | The series of molecular signals initiated by an extracellular ligand binding to an activin receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:rl, GOC:signaling] |
negative regulation of activin receptor signaling pathway | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of the activity of any activin receptor signaling pathway. [GOC:BHF, GOC:rl] |
positive regulation of osteoblast differentiation | biological process | Any process that activates or increases the frequency, rate or extent of osteoblast differentiation. [GOC:go_curators] |
positive regulation of DNA-templated transcription | biological process | Any process that activates or increases the frequency, rate or extent of cellular DNA-templated transcription. [GOC:go_curators, GOC:txnOH] |
positive regulation of transcription by RNA polymerase II | biological process | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. [GOC:go_curators, GOC:txnOH] |
positive regulation of peptidyl-tyrosine phosphorylation | biological process | Any process that activates or increases the frequency, rate or extent of the phosphorylation of peptidyl-tyrosine. [GOC:ai] |
smooth muscle cell differentiation | biological process | The process in which a relatively unspecialized cell acquires specialized features of a smooth muscle cell; smooth muscle lacks transverse striations in its constituent fibers and are almost always involuntary. [CL:0000192, GOC:ai] |
pharyngeal system development | biological process | The process whose specific outcome is the progression of the pharyngeal system over time, from its formation to the mature structure. The pharyngeal system is a transient embryonic complex that is specific to vertebrates. It comprises the pharyngeal arches, bulges of tissues of mesoderm and neural crest derivation through which pass nerves and pharyngeal arch arteries. The arches are separated internally by pharyngeal pouches, evaginations of foregut endoderm, and externally by pharyngeal clefts, invaginations of surface ectoderm. The development of the system ends when the stucture it contributes to are forming: the thymus, thyroid, parathyroids, maxilla, mandible, aortic arch, cardiac outflow tract, external and middle ear. [GOC:dph] |
positive regulation of SMAD protein signal transduction | biological process | Any process that increases the rate, frequency or extent of SMAD protein signal transduction. [GOC:BHF, GOC:dph, GOC:tb] |
ventricular septum morphogenesis | biological process | The developmental process in which a ventricular septum is generated and organized. A ventricular septum is an anatomical structure that separates the lower chambers (ventricles) of the heart from one another. [GOC:dph] |
cardiac muscle cell fate commitment | biological process | The commitment of cells to specific cardiac muscle cell fates and their capacity to differentiate into cardiac muscle cells. Cardiac muscle cells are striated muscle cells that are responsible for heart contraction. [GOC:mtg_heart] |
endocardial cushion cell fate commitment | biological process | The commitment of a cell to an endocardial cushion cell fate and its capacity to differentiate into an endocardial cushion cell. [GOC:BHF, GOC:dph] |
positive regulation of cardiac epithelial to mesenchymal transition | biological process | Any process that starts or increases the rate, frequency or extent of cardiac epithelial to mesenchymal transition, a transition where a cardiac epithelial cell loses apical/basolateral polarity, severs intercellular adhesive junctions, degrades basement membrane components and becomes a migratory mesenchymal cell. [GOC:BHF, GOC:rph, PMID:20951801] |
cellular response to BMP stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a bone morphogenetic protein (BMP) stimulus. [GOC:mah, GOC:yaf] |
positive regulation of determination of dorsal identity | biological process | Any process that activates or increases the frequency, rate or extent of determination of dorsal identity. [GOC:obol] |
negative regulation of G1/S transition of mitotic cell cycle | biological process | Any signaling pathway that decreases or inhibits the activity of a cell cycle cyclin-dependent protein kinase to modulate the switch from G1 phase to S phase of the mitotic cell cycle. [GOC:mtg_cell_cycle] |
negative regulation of extrinsic apoptotic signaling pathway | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of extrinsic apoptotic signaling pathway. [GOC:mtg_apoptosis] |
dorsal/ventral pattern formation | biological process | The regionalization process in which the areas along the dorsal/ventral axis are established that will lead to differences in cell differentiation. The dorsal/ventral axis is defined by a line that runs orthogonal to both the anterior/posterior and left/right axes. The dorsal end is defined by the upper or back side of an organism. The ventral end is defined by the lower or front side of an organism. [GOC:dph, GOC:go_curators, GOC:isa_complete, GOC:tb] |
heart development | biological process | The process whose specific outcome is the progression of the heart over time, from its formation to the mature structure. The heart is a hollow, muscular organ, which, by contracting rhythmically, keeps up the circulation of the blood. [GOC:jid, UBERON:0000948] |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |
cellular response to growth factor stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a growth factor stimulus. [GOC:mah] |