Proteins > Receptor-interacting serine/threonine-protein kinase 3
Page last updated: 2024-08-07 21:24:19
Receptor-interacting serine/threonine-protein kinase 3
A receptor-interacting serine/threonine-protein kinase 3 that is encoded in the genome of human. [PRO:CNA, Reactome:R-HSA-450328]
Synonyms
EC 2.7.11.1;
RIP-like protein kinase 3;
Receptor-interacting protein 3;
RIP-3
Research
Bioassay Publications (6)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (50.00) | 24.3611 |
2020's | 3 (50.00) | 2.80 |
Compounds (215)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
sorafenib | Homo sapiens (human) | IC50 | 14.5200 | 1 | 1 |
gw-5074 | Homo sapiens (human) | IC50 | 5.4000 | 1 | 1 |
ponatinib | Homo sapiens (human) | IC50 | 0.0016 | 2 | 2 |
dabrafenib | Homo sapiens (human) | IC50 | 0.1260 | 2 | 2 |
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 2.6640 | 1 | 1 |
lestaurtinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ruboxistaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
canertinib | Homo sapiens (human) | Kd | 2.2540 | 1 | 1 |
cyc 202 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
enzastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
erlotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lapatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 1.2740 | 1 | 1 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dasatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bosutinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
cyc 116 | Homo sapiens (human) | Kd | 4.8200 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
axitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 0.3160 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 1.6960 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 1.3460 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tofacitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
masitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly-2157299 | Homo sapiens (human) | Kd | 0.0110 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 1.8560 | 1 | 1 |
azd 6244 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 14813 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bibw 2992 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 1.7680 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 3.6680 | 1 | 1 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 0.3660 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 0.3680 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
brivanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
inno-406 | Homo sapiens (human) | Kd | 0.5060 | 1 | 1 |
kw 2449 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
danusertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 8931 | Homo sapiens (human) | Kd | 1.1710 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 3.6370 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 18.3500 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 6.0540 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
motesanib | Homo sapiens (human) | Kd | 1.0440 | 1 | 1 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 0.1700 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk690693 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 2.1770 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 0.6620 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 0.0850 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 0.0230 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 1.2820 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 2.4590 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
poziotinib | Homo sapiens (human) | Kd | 0.3920 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 1.8000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 2.0790 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 0.1610 | 1 | 1 |
arry-334543 | Homo sapiens (human) | Kd | 0.0880 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 0.2830 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-632 | Homo sapiens (human) | Kd | 0.1050 | 2 | 2 |
sb 1518 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 1.3040 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 0.9670 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 0.2450 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 0.3240 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.Journal of medicinal chemistry, , 02-27, Volume: 63, Issue:4, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.Journal of medicinal chemistry, , 02-27, Volume: 63, Issue:4, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities.Journal of medicinal chemistry, , 11-24, Volume: 65, Issue:22, 2022
Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.Journal of medicinal chemistry, , 02-27, Volume: 63, Issue:4, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.Journal of medicinal chemistry, , 02-27, Volume: 63, Issue:4, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Enables
This protein enables 8 target(s):
Target | Category | Definition |
transcription coactivator activity | molecular function | A transcription coregulator activity that activates or increases the transcription of specific gene sets via binding to a DNA-bound DNA-binding transcription factor, either on its own or as part of a complex. Coactivators often act by altering chromatin structure and modifications. For example, one class of transcription coactivators modifies chromatin structure through covalent modification of histones. A second class remodels the conformation of chromatin in an ATP-dependent fashion. A third class modulates interactions of DNA-bound DNA-binding transcription factors with other transcription coregulators. A fourth class of coactivator activity is the bridging of a DNA-binding transcription factor to the general (basal) transcription machinery. The Mediator complex, which bridges sequence-specific DNA binding transcription factors and RNA polymerase, is also a transcription coactivator. [GOC:txnOH-2018, PMID:10213677, PMID:16858867] |
protein kinase activity | molecular function | Catalysis of the phosphorylation of an amino acid residue in a protein, usually according to the reaction: a protein + ATP = a phosphoprotein + ADP. [PMID:25399640] |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
identical protein binding | molecular function | Binding to an identical protein or proteins. [GOC:jl] |
protein-containing complex binding | molecular function | Binding to a macromolecular complex. [GOC:jl] |
protein serine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate. [RHEA:17989] |
Located In
This protein is located in 2 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
cytosol | cellular component | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. [GOC:hjd, GOC:jl] |
Active In
This protein is active in 2 target(s):
Target | Category | Definition |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
Part Of
This protein is part of 1 target(s):
Target | Category | Definition |
protein-containing complex | cellular component | A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together. [GOC:dos, GOC:mah] |
Involved In
This protein is involved in 32 target(s):
Target | Category | Definition |
regulation of T cell mediated cytotoxicity | biological process | Any process that modulates the frequency, rate, or extent of T cell mediated cytotoxicity. [GOC:add, ISBN:0781735149] |
regulation of adaptive immune response | biological process | Any process that modulates the frequency, rate, or extent of an adaptive immune response. [GOC:add] |
positive regulation of phosphatase activity | biological process | Any process that increases the rate or frequency of phosphatase activity. Phosphatases catalyze the hydrolysis of phosphoric monoesters, releasing inorganic phosphate. [GOC:BHF, GOC:dph, GOC:tb] |
activation of protein kinase activity | biological process | Any process that initiates the activity of an inactive protein kinase. [GOC:mah] |
regulation of type II interferon production | biological process | Any process that modulates the frequency, rate, or extent of interferon-gamma production. Interferon-gamma is also known as type II interferon. [GOC:add, GOC:mah, PMID:15546383] |
T cell differentiation in thymus | biological process | The process in which a precursor cell type acquires the specialized features of a T cell via a differentiation pathway dependent upon transit through the thymus. [GOC:add, ISBN:0781735149] |
protein modification process | biological process | The covalent alteration of one or more amino acids occurring in proteins, peptides and nascent polypeptides (co-translational, post-translational modifications). Includes the modification of charged tRNAs that are destined to occur in a protein (pre-translation modification). [GOC:bf, GOC:jl] |
non-canonical NF-kappaB signal transduction | biological process | An intracellular signaling cassette characterized by the NIK-dependent processing and activation of NF-kappaB. Begins with activation of the NF-kappaB-inducing kinase (NIK), which in turn phosphorylates and activates IkappaB kinase alpha (IKKalpha). IKKalpha phosphorylates the NF-kappa B2 protein (p100) leading to p100 processing and release of an active NF-kappaB (p52). The non-canonical NF-kappaB signaling pathway is generally activated by ligands of the TNF receptor superfamily, including lymphotoxin beta (LTB), CD40, OX40, RANK, TWEAK and B cell-activating factor (BAFF). [GOC:bf, GOC:mg2, GOC:signaling, GOC:vs, PMID:11239468, PMID:15140882, PMID:34659217] |
regulation of apoptotic process | biological process | Any process that modulates the occurrence or rate of cell death by apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
T cell homeostasis | biological process | The process of regulating the proliferation and elimination of T cells such that the total number of T cells within a whole or part of an organism is stable over time in the absence of an outside stimulus. [GOC:mgi_curators, ISBN:0781735149] |
positive regulation of DNA-templated transcription | biological process | Any process that activates or increases the frequency, rate or extent of cellular DNA-templated transcription. [GOC:go_curators, GOC:txnOH] |
regulation of activated T cell proliferation | biological process | Any process that modulates the frequency, rate or extent of activated T cell proliferation. [GOC:go_curators] |
protein autophosphorylation | biological process | The phosphorylation by a protein of one or more of its own amino acid residues (cis-autophosphorylation), or residues on an identical protein (trans-autophosphorylation). [ISBN:0198506732] |
lymph node development | biological process | The process whose specific outcome is the progression of lymph nodes over time, from their formation to the mature structure. A lymph node is a round, oval, or bean shaped structure localized in clusters along the lymphatic vessels, with a distinct internal structure including specialized vasculature and B- and T-zones for the activation of lymphocytes. [GOC:add, ISBN:068340007X, ISBN:0781735149] |
spleen development | biological process | The process whose specific outcome is the progression of the spleen over time, from its formation to the mature structure. The spleen is a large vascular lymphatic organ composed of white and red pulp, involved both in hemopoietic and immune system functions. [GOC:add, ISBN:0781735149] |
thymus development | biological process | The process whose specific outcome is the progression of the thymus over time, from its formation to the mature structure. The thymus is a symmetric bi-lobed organ involved primarily in the differentiation of immature to mature T cells, with unique vascular, nervous, epithelial, and lymphoid cell components. [GOC:add, ISBN:0781735149] |
positive regulation of NF-kappaB transcription factor activity | biological process | Any process that activates or increases the frequency, rate or extent of activity of the transcription factor NF-kappaB. [GOC:dph, GOC:tb, PMID:15087454, PMID:15170030] |
defense response to virus | biological process | Reactions triggered in response to the presence of a virus that act to protect the cell or organism. [GOC:ai] |
positive regulation of necroptotic process | biological process | Any process that increases the rate, frequency or extent of a necroptotic process, a necrotic cell death process that results from the activation of endogenous cellular processes, such as signaling involving death domain receptors or Toll-like receptors. [GOC:BHF, GOC:dph, GOC:mtg_apoptosis, GOC:tb] |
regulation of activation-induced cell death of T cells | biological process | Any process that modulates the occurrence or rate of activation-induced cell death of T cells. [GOC:add, ISBN:0781765196] |
necroptotic process | biological process | A programmed necrotic cell death process which begins when a cell receives a signal (e.g. a ligand binding to a death receptor or to a Toll-like receptor), and proceeds through a series of biochemical events (signaling pathways), characterized by activation of receptor-interacting serine/threonine-protein kinase 1 and/or 3 (RIPK1/3, also called RIP1/3) and by critical dependence on mixed lineage kinase domain-like (MLKL), and which typically lead to common morphological features of necrotic cell death. The process ends when the cell has died. The process is divided into a signaling phase, and an execution phase, which is triggered by the former. [GOC:BHF, GOC:dph, GOC:mah, GOC:mtg_apoptosis, GOC:tb, PMID:18846107, PMID:20823910, PMID:21737330, PMID:21760595, PMID:21876153] |
cellular response to hydrogen peroxide | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a hydrogen peroxide (H2O2) stimulus. [CHEBI:16240, GOC:mah] |
reactive oxygen species metabolic process | biological process | The chemical reactions and pathways involving a reactive oxygen species, any molecules or ions formed by the incomplete one-electron reduction of oxygen. They contribute to the microbicidal activity of phagocytes, regulation of signal transduction and gene expression, and the oxidative damage to biopolymers. [GOC:mah] |
apoptotic signaling pathway | biological process | The series of molecular signals which triggers the apoptotic death of a cell. The pathway starts with reception of a signal, and ends when the execution phase of apoptosis is triggered. [GOC:mtg_apoptosis] |
programmed necrotic cell death | biological process | A necrotic cell death process that results from the activation of endogenous cellular processes, such as signaling involving death domain receptors or Toll-like receptors. [GOC:mtg_apoptosis, PMID:21760595] |
necroptotic signaling pathway | biological process | The series of molecular signals which triggers the necroptotic death of a cell. The pathway starts with reception of a signal, is characterized by activation of receptor-interacting serine/threonine-protein kinase 1 and/or 3 (RIPK1/3, also called RIP1/3), and ends when the execution phase of necroptosis is triggered. [GOC:mtg_apoptosis, PMID:20823910] |
execution phase of necroptosis | biological process | A stage of the necroptotic process that starts after a necroptotic signal has been relayed to the execution machinery. Key steps of the execution phase are swelling of organelles, minor ultrastructural modifications of the nucleus (specifically, dilatation of the nuclear membrane and condensation of chromatin into small, irregular, circumscribed patches) and increased cell volume (oncosis), culminating in the disruption of the plasma membrane and subsequent loss of intracellular contents. The execution phase ends when the cell has died. [GOC:mtg_apoptosis, PMID:20823910] |
amyloid fibril formation | biological process | The generation of amyloid fibrils, insoluble fibrous protein aggregates exhibiting beta sheet structure, from proteins. [GOC:cvs, GOC:jj, GOC:ppm, GOC:sj, PMID:21148556, PMID:22817896, PMID:28937655, PMID:29654159] |
positive regulation of reactive oxygen species metabolic process | biological process | Any process that activates or increases the frequency, rate or extent of reactive oxygen species metabolic process. [GOC:mah] |
regulation of CD8-positive, alpha-beta cytotoxic T cell extravasation | biological process | Any process that modulates the frequency, rate or extent of CD8-positive, alpha-beta cytotoxic T cell extravasation. [GOC:obol] |
positive regulation of intrinsic apoptotic signaling pathway | biological process | Any process that activates or increases the frequency, rate or extent of intrinsic apoptotic signaling pathway. [GOC:mtg_apoptosis] |
signal transduction | biological process | The cellular process in which a signal is conveyed to trigger a change in the activity or state of a cell. Signal transduction begins with reception of a signal (e.g. a ligand binding to a receptor or receptor activation by a stimulus such as light), or for signal transduction in the absence of ligand, signal-withdrawal or the activity of a constitutively active receptor. Signal transduction ends with regulation of a downstream cellular process, e.g. regulation of transcription or regulation of a metabolic process. Signal transduction covers signaling from receptors located on the surface of the cell and signaling via molecules located within the cell. For signaling between cells, signal transduction is restricted to events at and within the receiving cell. [GOC:go_curators, GOC:mtg_signaling_feb11] |