Proteins > Discoidin domain-containing receptor 2
Page last updated: 2024-08-07 18:43:15
Discoidin domain-containing receptor 2
A discoidin domain-containing receptor 2 that is encoded in the genome of human. [PRO:CNA, UniProtKB:Q16832]
Synonyms
Discoidin domain receptor 2;
EC 2.7.10.1;
CD167 antigen-like family member B;
Discoidin domain-containing receptor tyrosine kinase 2;
Neurotrophic tyrosine kinase, receptor-related 3;
Receptor protein-tyrosine kinase TKT;
Tyrosine
Research
Bioassay Publications (21)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (9.52) | 29.6817 |
2010's | 19 (90.48) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Compounds (237)
Drugs with Inhibition Measurements
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 1.6000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 0.0703 | 3 | 3 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | Kd | 0.0420 | 2 | 2 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 10.2667 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
canertinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 0.0306 | 5 | 5 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 5.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 0.3281 | 7 | 7 |
pd 173955 | Homo sapiens (human) | Kd | 0.0120 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 0.0934 | 5 | 5 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 12.5300 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 0.0195 | 5 | 5 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 10.2133 | 3 | 3 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 15.0700 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 13.2250 | 4 | 4 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 6.6380 | 5 | 5 |
cyc 116 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 21.7667 | 2 | 3 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 0.5455 | 2 | 2 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 0.2180 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 0.0880 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 0.5920 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 0.5240 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 1.9910 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 0.1755 | 6 | 6 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6333 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 28.1920 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 42.2800 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 1.5230 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 7.6000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 0.4210 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 0.9780 | 2 | 2 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 0.0480 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 0.0110 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 16.0500 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 0.8500 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 12.5333 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 10.6400 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 15.5333 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 4.1000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 3.4210 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 0.0390 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 2.3310 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 4.2890 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 15.4750 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 4.1000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 1.1380 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 19.2900 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
bms 777607 | Homo sapiens (human) | Kd | 0.0650 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 0.0870 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 0.2980 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 8.1200 | 4 | 4 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 0.4230 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 0.0940 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 0.8050 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 0.5010 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 0.2270 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 0.0928 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 0.9080 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 1.2710 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 0.1830 | 1 | 1 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 2.2840 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.2000 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 0.0290 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 6.1000 | 1 | 1 |
Discovery of 4-Methyl-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((1-nicotinoylpiperidin-4-yl)oxy)benzamide (CHMFL-ABL/KIT-155) as a Novel Highly Potent Type II ABL/KIT Dual Kinase Inhibitor with a Distinct Hinge Binding.Journal of medicinal chemistry, , 01-12, Volume: 60, Issue:1, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor.ACS chemical biology, , Oct-18, Volume: 8, Issue:10, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib.Bioorganic & medicinal chemistry, , Oct-01, Volume: 18, Issue:19, 2010
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A Selective and Brain Penetrant p38αMAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction.Journal of medicinal chemistry, , 06-13, Volume: 62, Issue:11, 2019
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor.ACS chemical biology, , Oct-18, Volume: 8, Issue:10, 2013
Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors.Journal of medicinal chemistry, , Apr-25, Volume: 56, Issue:8, 2013
Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 23, Issue:3, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib.Bioorganic & medicinal chemistry, , Oct-01, Volume: 18, Issue:19, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery and optimization of a series of 3-substituted indazole derivatives as multi-target kinase inhibitors for the treatment of lung squamous cell carcinoma.European journal of medicinal chemistry, , Feb-01, Volume: 163, 2019
Synthesis and biological evaluation of novel dasatinib analogues as potent DDR1 and DDR2 kinase inhibitors.Chemical biology & drug design, , Volume: 89, Issue:3, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Fragment-Based Discovery of Potent and Selective DDR1/2 Inhibitors.ACS medicinal chemistry letters, , Jul-09, Volume: 6, Issue:7, 2015
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors.Journal of medicinal chemistry, , Apr-25, Volume: 56, Issue:8, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.Journal of medicinal chemistry, , Apr-23, Volume: 58, Issue:8, 2015
Identification of type II and III DDR2 inhibitors.Journal of medicinal chemistry, , May-22, Volume: 57, Issue:10, 2014
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of 1-(4-(4-Amino-3-(4-(2-morpholinoethoxy)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea (CHMFL-FLT3-213) as a Highly Potent Type II FLT3 Kinase Inhibitor Capable of Overcoming a Variety of FLT3 Kinase MutanJournal of medicinal chemistry, , 10-26, Volume: 60, Issue:20, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Enables
This protein enables 5 target(s):
Target | Category | Definition |
transmembrane receptor protein tyrosine kinase activity | molecular function | Combining with a signal and transmitting the signal from one side of the membrane to the other to initiate a change in cell activity by catalysis of the reaction: ATP + a protein-L-tyrosine = ADP + a protein-L-tyrosine phosphate. [EC:2.7.10.1, GOC:mah] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
collagen binding | molecular function | Binding to collagen, a group of fibrous proteins of very high tensile strength that form the main component of connective tissue in animals. Collagen is highly enriched in glycine (some regions are 33% glycine) and proline, occurring predominantly as 3-hydroxyproline (about 20%). [GOC:ai, ISBN:0198506732] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
protein tyrosine kinase collagen receptor activity | molecular function | Combining with collagen and transmitting the signal from one side of the membrane to the other to initiate a change in cell activity by catalysis of the reaction: ATP + a protein-L-tyrosine = ADP + a protein-L-tyrosine phosphate. [GOC:bf, GOC:uh, PMID:16626936, PMID:21568710] |
Located In
This protein is located in 4 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
focal adhesion | cellular component | A cell-substrate junction that anchors the cell to the extracellular matrix and that forms a point of termination of actin filaments. In insects focal adhesion has also been referred to as hemi-adherens junction (HAJ). [GOC:aruk, GOC:bc, ISBN:0124325653, ISBN:0815316208, PMID:10419689, PMID:12191915, PMID:15246682, PMID:1643657, PMID:16805308, PMID:19197329, PMID:23033047, PMID:26923917, PMID:28796323, PMID:8314002] |
actin cytoskeleton | cellular component | The part of the cytoskeleton (the internal framework of a cell) composed of actin and associated proteins. Includes actin cytoskeleton-associated complexes. [GOC:jl, ISBN:0395825172, ISBN:0815316194] |
apical plasma membrane | cellular component | The region of the plasma membrane located at the apical end of the cell. [GOC:curators] |
Active In
This protein is active in 1 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
Part Of
This protein is part of 1 target(s):
Target | Category | Definition |
receptor complex | cellular component | Any protein complex that undergoes combination with a hormone, neurotransmitter, drug or intracellular messenger to initiate a change in cell function. [GOC:go_curators] |
Involved In
This protein is involved in 37 target(s):
Target | Category | Definition |
ossification | biological process | The formation of bone or of a bony substance, or the conversion of fibrous tissue or of cartilage into bone or a bony substance. [GOC:mtg_mpo, PMID:17572649] |
endochondral bone growth | biological process | The increase in size or mass of an endochondral bone that contributes to the shaping of the bone. [GOC:ascb_2009, GOC:dph, GOC:tb] |
cell adhesion | biological process | The attachment of a cell, either to another cell or to an underlying substrate such as the extracellular matrix, via cell adhesion molecules. [GOC:hb, GOC:pf] |
signal transduction | biological process | The cellular process in which a signal is conveyed to trigger a change in the activity or state of a cell. Signal transduction begins with reception of a signal (e.g. a ligand binding to a receptor or receptor activation by a stimulus such as light), or for signal transduction in the absence of ligand, signal-withdrawal or the activity of a constitutively active receptor. Signal transduction ends with regulation of a downstream cellular process, e.g. regulation of transcription or regulation of a metabolic process. Signal transduction covers signaling from receptors located on the surface of the cell and signaling via molecules located within the cell. For signaling between cells, signal transduction is restricted to events at and within the receiving cell. [GOC:go_curators, GOC:mtg_signaling_feb11] |
regulation of extracellular matrix disassembly | biological process | Any process that modulates the rate, frequency or extent of extracellular matrix disassembly. Extracellular matrix disassembly is a process that results in the breakdown of the extracellular matrix. [GOC:BHF, GOC:dph, GOC:tb] |
positive regulation of fibroblast migration | biological process | Any process that increases the rate, frequency or extent of fibroblast cell migration. Fibroblast cell migration is accomplished by extension and retraction of a pseudopodium. [GOC:BHF, GOC:dph, GOC:tb] |
peptidyl-tyrosine phosphorylation | biological process | The phosphorylation of peptidyl-tyrosine to form peptidyl-O4'-phospho-L-tyrosine. [RESID:AA0039] |
collagen fibril organization | biological process | Any process that determines the size and arrangement of collagen fibrils within an extracellular matrix. [GOC:mah, ISBN:0815316194] |
regulation of bone mineralization | biological process | Any process that modulates the frequency, rate or extent of bone mineralization. [GOC:go_curators] |
biomineral tissue development | biological process | Formation of hard tissues that consist mainly of inorganic compounds, and also contain a small amounts of organic matrices that are believed to play important roles in their formation. [PMID:15132736] |
positive regulation of collagen biosynthetic process | biological process | Any process that activates or increases the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of collagen, any of a group of fibrous proteins of very high tensile strength that form the main component of connective tissue in animals. [GOC:mah] |
regulation of tissue remodeling | biological process | Any process that modulates the frequency, rate, or extent of tissue remodeling. [GOC:add] |
chondrocyte proliferation | biological process | The multiplication or reproduction of chondrocytes by cell division, resulting in the expansion of their population. A chondrocyte is a polymorphic cell that forms cartilage. [CL:0000138, GOC:yaf, PMID:21484705] |
response to muscle stretch | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a myofibril being extended beyond its slack length. [GOC:BHF, GOC:vk, PMID:14583192] |
collagen-activated tyrosine kinase receptor signaling pathway | biological process | The series of molecular signals initiated by collagen binding to its receptor on the surface of a target cell where the receptor possesses tyrosine kinase activity, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:bf, GOC:uh, PMID:15888913, PMID:16626936] |
negative regulation of apoptotic process | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of cell death by apoptotic process. [GOC:jl, GOC:mtg_apoptosis] |
positive regulation of osteoblast differentiation | biological process | Any process that activates or increases the frequency, rate or extent of osteoblast differentiation. [GOC:go_curators] |
positive regulation of protein kinase activity | biological process | Any process that activates or increases the frequency, rate or extent of protein kinase activity. [GOC:go_curators] |
protein autophosphorylation | biological process | The phosphorylation by a protein of one or more of its own amino acid residues (cis-autophosphorylation), or residues on an identical protein (trans-autophosphorylation). [ISBN:0198506732] |
positive regulation of fibroblast proliferation | biological process | Any process that activates or increases the frequency, rate or extent of multiplication or reproduction of fibroblast cells. [GOC:jid] |
positive regulation of DNA-binding transcription factor activity | biological process | Any process that activates or increases the frequency, rate or extent of activity of a transcription factor, any factor involved in the initiation or regulation of transcription. [GOC:ai] |
cellular response to hypoxia | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating lowered oxygen tension. Hypoxia, defined as a decline in O2 levels below normoxic levels of 20.8 - 20.95%, results in metabolic adaptation at both the cellular and organismal level. [GOC:mah] |
cellular response to transforming growth factor beta stimulus | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a transforming growth factor beta stimulus. [GOC:ecd, PMID:15451575] |
positive regulation of extracellular matrix disassembly | biological process | Any process that increases the rate, frequency or extent of extracellular matrix disassembly. Extracellular matrix disassembly is a process that results in the breakdown of the extracellular matrix. [GOC:dph, GOC:tb] |
positive regulation of wound healing | biological process | Any process that increases the rate, frequency, or extent of the series of events that restore integrity to a damaged tissue, following an injury. [GOC:BHF] |
positive regulation of G1/S transition of mitotic cell cycle | biological process | Any signaling pathway that increases or activates a cell cycle cyclin-dependent protein kinase to modulate the switch from G1 phase to S phase of the mitotic cell cycle. [GOC:mtg_cell_cycle] |
negative regulation of hydrogen peroxide-mediated programmed cell death | biological process | Any process that stops, prevents or reduces the frequency, rate or extent of hydrogen peroxide-mediated programmed cell death. [GOC:BHF, GOC:TermGenie] |
cellular response to angiotensin | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an angiotensin stimulus. Angiotensin is any of three physiologically active peptides (angiotensin II, III, or IV) processed from angiotensinogen. [GO_REF:0000071, GOC:TermGenie, PMID:22982863] |
positive regulation of vascular associated smooth muscle cell proliferation | biological process | Any process that activates or increases the frequency, rate or extent of vascular smooth muscle cell proliferation. [GO_REF:0000058, GOC:TermGenie, PMID:23246467] |
positive regulation of vascular associated smooth muscle cell migration | biological process | Any process that activates or increases the frequency, rate or extent of vascular associated smooth muscle cell migration. [GO_REF:0000058, GOC:BHF, GOC:BHF_miRNA, GOC:rph, GOC:TermGenie, PMID:20693317] |
positive regulation of hepatic stellate cell proliferation | biological process | Any process that activates or increases the frequency, rate or extent of hepatic stellate cell proliferation. [GO_REF:0000058, GOC:TermGenie, PMID:15358192] |
positive regulation of hepatic stellate cell activation | biological process | Any process that activates or increases the frequency, rate or extent of hepatic stellate cell activation. [GOC:obol] |
positive regulation of neuron projection development | biological process | Any process that increases the rate, frequency or extent of neuron projection development. Neuron projection development is the process whose specific outcome is the progression of a neuron projection over time, from its formation to the mature structure. A neuron projection is any process extending from a neural cell, such as axons or dendrites (collectively called neurites). [GOC:dph, GOC:tb] |
cell surface receptor protein tyrosine kinase signaling pathway | biological process | The series of molecular signals initiated by an extracellular ligand binding to a receptor on the surface of the target cell where the receptor possesses tyrosine kinase activity, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:ceb, GOC:signaling] |
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction | biological process | Any process that activates or increases the frequency, rate or extent of phosphatidylinositol 3-kinase/protein kinase B signal transduction. [GOC:ai] |
multicellular organism development | biological process | The biological process whose specific outcome is the progression of a multicellular organism over time from an initial condition (e.g. a zygote or a young adult) to a later condition (e.g. a multicellular animal or an aged adult). [GOC:dph, GOC:ems, GOC:isa_complete, GOC:tb] |
positive regulation of kinase activity | biological process | Any process that activates or increases the frequency, rate or extent of kinase activity, the catalysis of the transfer of a phosphate group, usually from ATP, to a substrate molecule. [GOC:mah] |