Page last updated: 2024-12-08

rufloxacin hydrochloride

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID176015
CHEMBL ID1385206
SCHEMBL ID51616
MeSH IDM0324282

Synonyms (51)

Synonym
AC-18051
7h-pyrido(1,2,3-de)(1,4)benzothiazine-6-carboxylic acid, 2,3-dihydro-9-fluoro-10-(4-methyl-1-piperazinyl)-7-oxo-, monohydrochloride
qari
tebraxin
isf-09334
rufloxacin hydrochloride
mf-934
MLS000041115
smr000046069
rufloxacin hcl
106017-08-7
qari (tn)
D08496
unii-1643374n6l
1643374n6l ,
tox21_110990
dtxcid8025709
cas-106017-08-7
dtxsid0045709 ,
9-fluoro-10-(4-methylpiperazin-1-yl)-7-oxo-3,7-dihydro-2h-[1,4]thiazino[2,3,4-ij]quinoline-6-carboxylic acid hydrochloride
FT-0631036
AKOS015913984
7h-pyrido[1,2,3-de]-1,4-benzothiazine-6-carboxylicacid, 9-fluoro-2,3-dihydro-10-(4-methyl-1-piperazinyl)-7-oxo-, hydrochloride(1:1)
SCHEMBL51616
NCGC00074024-03
tox21_110990_1
9-fluoro-10-(n-(4'-methyl)-piperazinyl)-7-oxo-2,3-dihydro-7h-pyrido(1,2,3)(1,4)benzothiazine-6-carboxylic acid hydrochloride
rufloxacin hydrochloride [who-dd]
rufloxacin hydrochloride [mart.]
rufloxacin hydrochloride [mi]
CHEMBL1385206
HY-B0902A
J-001520
rufloxacin (hydrochloride)
mfcd00912283
9-fluoro-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7h-[1,4]thiazino[2,3,4-ij]quinoline-6-carboxylic acid (hcl)
monose
rufloxacin(hydrochloride)
2,3-dihydro-9-fluoro-10-(4-methyl-1-piperazinyl)-7-oxo-7h-pyrido[1,2,3-de][1,4]benzothiazine-6-carboxylic acid hydrochloride;2,3-dihydro-9-fluoro-10-(4-methyl-1-piperazinyl)-7-oxo-7h-pyrido[1,2,3-de][1,4]benzothiazine-6-carboxylic acid hydrochloride
7-fluoro-6-(4-methylpiperazin-1-yl)-10-oxo-4-thia-1-azatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid hydrochloride
rufloxacinhydrochloride
BCP13481
mf-934 hydrochloride
Q27251777
F85190
7-fluoro-6-(4-methylpiperazin-1-yl)-10-oxo-4-thia-1-azatricyclo[7.3.1.0^{5,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid;hydrochloride
rufloxacin hydrochloride 100 microg/ml in acetonitrile:dimethylsulfoxide
7-fluoro-6-(4-methylpiperazin-1-yl)-10-oxo-4-thia-1-azatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid;hydrochloride
7-fluoro-6-(4-methylpiperazin-1-yl)-10-oxo-4-thia-1-azatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid;hydron;chloride
AS-76826
9-fluoro-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7h-[1,4]thiazino[2,3,4-ij]quinoline-6-carboxylic acid hydrochloride

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (17)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency1.25890.044717.8581100.0000AID485294
Chain A, HADH2 proteinHomo sapiens (human)Potency32.46480.025120.237639.8107AID886; AID893
Chain B, HADH2 proteinHomo sapiens (human)Potency32.46480.025120.237639.8107AID886; AID893
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency31.62280.177814.390939.8107AID2147
Chain A, Ferritin light chainEquus caballus (horse)Potency44.66845.623417.292931.6228AID485281
thioredoxin reductaseRattus norvegicus (Norway rat)Potency19.95260.100020.879379.4328AID588456
ClpPBacillus subtilisPotency28.18381.995322.673039.8107AID651965
Fumarate hydrataseHomo sapiens (human)Potency35.48130.00308.794948.0869AID1347053
TDP1 proteinHomo sapiens (human)Potency16.94220.000811.382244.6684AID686978; AID686979
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency35.48130.011212.4002100.0000AID1030
progesterone receptorHomo sapiens (human)Potency29.84930.000417.946075.1148AID1346784; AID1347036
polyproteinZika virusPotency35.48130.00308.794948.0869AID1347053
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency25.11890.035520.977089.1251AID504332
Histone H2A.xCricetulus griseus (Chinese hamster)Potency27.66380.039147.5451146.8240AID1224845
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency22.38720.001815.663839.8107AID894
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency95.28340.425612.059128.1838AID504891
Inositol monophosphatase 1Rattus norvegicus (Norway rat)Potency16.81591.000010.475628.1838AID1457; AID901
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (44)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (13)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (7.69)29.6817
2010's6 (46.15)24.3611
2020's6 (46.15)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.08

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.08 (24.57)
Research Supply Index2.64 (2.92)
Research Growth Index4.72 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.08)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other13 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]