Target type: molecularfunction
Enables the transfer of water (H2O) from one side of a membrane to the other. [GOC:ai]
Water transmembrane transporter activity refers to the movement of water molecules across biological membranes. This crucial process is facilitated by specialized proteins known as aquaporins. Aquaporins are integral membrane proteins that form channels through which water can pass rapidly and selectively. The molecular mechanism underlying water transport by aquaporins involves a series of intricate interactions between water molecules and the protein's amino acid residues. The aquaporin channel is typically lined by hydrophilic residues, which attract water molecules and allow them to move through the channel. However, the channel also contains a narrow constriction point, known as the "selectivity filter," which prevents the passage of larger molecules such as ions and solutes. This selectivity filter ensures that only water molecules can traverse the channel, maintaining the integrity of cellular and organellar compartments. The movement of water through aquaporins is driven by the osmotic gradient across the membrane. This gradient arises from differences in the concentration of solutes between the two compartments. Water molecules flow from areas of high water concentration (low solute concentration) to areas of low water concentration (high solute concentration), driven by the tendency to equalize the solute concentration. This process is essential for numerous physiological functions, including maintaining cell volume, regulating blood pressure, and facilitating nutrient transport. Aquaporin-mediated water transport is highly regulated and influenced by factors such as pH, temperature, and the presence of specific ligands. The dysregulation of aquaporin activity has been implicated in various diseases, including diabetes, kidney disease, and neurological disorders.'
"
Protein | Definition | Taxonomy |
---|---|---|
Aquaporin-1 | An aquaporin-1 that is encoded in the genome of human. [PRO:DNx, UniProtKB:P29972] | Homo sapiens (human) |
Sodium/glucose cotransporter 1 | A sodium/glucose cotransporter 1 that is encoded in the genome of human. [PRO:DNx, UniProtKB:P13866] | Homo sapiens (human) |
Compound | Definition | Classes | Roles |
---|---|---|---|
phloretin | dihydrochalcones | antineoplastic agent; plant metabolite | |
phlorhizin | aryl beta-D-glucoside; dihydrochalcones; monosaccharide derivative | antioxidant; plant metabolite | |
vexibinol | sophoraflavanone G : A tetrahydroxyflavanone having a structure of naringenin bearing an additional hydroxyl substituent at position 2' as well as a (2R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl (lavandulyl) substituent at position 8'. vexibinol: flavanol from Sophora; structure in first source; RN given refers to (S-(R*,S*))-isomer | (2S)-flavan-4-one; 4'-hydroxyflavanones; tetrahydroxyflavanone | antimalarial; antimicrobial agent; antioxidant; plant metabolite |
2',4',6'-Trihydroxydihydrochalcone | chalcones | ||
cgp 71683 a | naphthalenes; sulfonic acid derivative | ||
2',4',6'-trihydroxychalcone | pinocembrin chalcone : A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2', 4' and 6' respectively. pinocembrin chalcone: isolated from Helichrysum trilineatum; structure in first source | chalcones | antifungal agent; plant metabolite |
sergliflozin etabonate | sergliflozin: a hypoglycemic agent that inhibits SGLT2 sodium-glucose transporter; structure in first source | glycoside | |
remogliflozin etabonate | remogliflozin etabonate: orally administered hypoglycemic agent; structure in first source | glycoside | |
dapagliflozin | aromatic ether; C-glycosyl compound; monochlorobenzenes | hypoglycemic agent; sodium-glucose transport protein subtype 2 inhibitor | |
ipragliflozin | glycoside | ||
empagliflozin | aromatic ether; C-glycosyl compound; monochlorobenzenes; tetrahydrofuryl ether | hypoglycemic agent; sodium-glucose transport protein subtype 2 inhibitor | |
1,5-anhydro-1-(5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl)-1-thioglucitol | diarylmethane | ||
nothofagin | nothofagin: a dihydrochalcone | ||
canagliflozin | canagliflozin hydrate : A hydrate that is the hemihydrate form of canagliflozin. Used for treatment of type II diabetes via inhibition of sodium-glucose transport protein subtype 2. | C-glycosyl compound; organofluorine compound; thiophenes | hypoglycemic agent; sodium-glucose transport protein subtype 2 inhibitor |
pf 04971729 | ertugliflozin: structure in first source | diarylmethane | |
deberza | 2-benzofurans |