tobramycin has been researched along with silver in 11 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (9.09) | 29.6817 |
2010's | 5 (45.45) | 24.3611 |
2020's | 5 (45.45) | 2.80 |
Authors | Studies |
---|---|
Camper, A; Kim, J; Pitts, B; Stewart, PS; Yoon, J | 1 |
Khan, W; Naqvi, AH; Singh, A; Singh, BN; Singh, BR; Singh, HB | 1 |
Gholipourmalekabadi, M; Hashemi, A; Mozafari, M; Rostami, A; Sameni, M; Zamani, F | 1 |
Goodyear, MC; Habash, MB; Harris, RJ; Khursigara, CM; Park, AJ; Surette, MD; Vis, EC | 1 |
Ahmad, A; Jan, A; Khan, AU; Khan, UA; Rahman, AU; Raza, M; Subhan, F; Tariq, M; Ullah, S; Yuan, Q | 1 |
Chen, Y; Guo, Q; Lan, T; Peng, J; Shen, X; Tao, L; Xu, Y | 1 |
Armijo, LM; Brandt, YI; Cook, NC; Huber, DL; Kopciuch, M; Monson, TC; Osiński, M; Rivera, AC; Smyth, HDC; Wawrzyniec, SJ; Withers, NJ | 1 |
Cooksley, CM; Feizi, S; Nepal, R; Psaltis, AJ; Vreugde, S; Wormald, PJ | 1 |
Derakhshandeh, K; Heshmati, A; Mahjub, R; Mehri, F; Ranjbar, A; Shayesteh, OH | 1 |
Bi, S; Liu, J; Song, D; Wang, Y; Yang, B; Yuan, Y; Zhang, F | 1 |
Abdel Hamid, M; Elshahawy, M; Habib, A; Hammad, S; Mabrouk, M | 1 |
11 other study(ies) available for tobramycin and silver
Article | Year |
---|---|
Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm.
Topics: Anti-Bacterial Agents; Biofilms; Cell Membrane; Chlorine; Colony Count, Microbial; Disinfectants; Microscopy, Confocal; Pseudomonas aeruginosa; Silver; Staining and Labeling; Tetrazolium Salts; Tobramycin | 2008 |
Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.
Topics: Anti-Bacterial Agents; Biofilms; Fungi; Metal Nanoparticles; Models, Biological; Pseudomonas aeruginosa; Quorum Sensing; Silver; Tobramycin | 2015 |
Silver- and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns.
Topics: Amikacin; Animals; Anti-Bacterial Agents; Aztreonam; Burns; Carbenicillin; Cefepime; Ceftazidime; Ceftriaxone; Cell Survival; Cephalosporins; Ciprofloxacin; Drug Resistance, Multiple, Bacterial; Fluorides; Gentamicins; Glass; Humans; Imipenem; Meropenem; Mice; Microbial Sensitivity Tests; NIH 3T3 Cells; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa; Silver; Thienamycins; Tobramycin; Wound Infection | 2016 |
Potentiation of Tobramycin by Silver Nanoparticles against Pseudomonas aeruginosa Biofilms.
Topics: Anti-Bacterial Agents; Biofilms; Drug Synergism; Humans; Metal Nanoparticles; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Silver; Tobramycin | 2017 |
Tobramycin mediated silver nanospheres/graphene oxide composite for synergistic therapy of bacterial infection.
Topics: Anti-Bacterial Agents; Cell Survival; Cell Wall; Drug Synergism; Escherichia coli; Graphite; HEK293 Cells; Humans; Metal Nanoparticles; Microscopy, Atomic Force; Microscopy, Electron, Transmission; Nanocomposites; Oxides; Reactive Oxygen Species; Silver; Spectroscopy, Fourier Transform Infrared; Tobramycin | 2018 |
Enhanced of antibacterial activity of antibiotic-functionalized silver nanocomposites with good biocompatibility.
Topics: Animals; Anti-Bacterial Agents; Biocompatible Materials; Carbohydrates; Cell Survival; Drug Resistance, Bacterial; Escherichia coli; Graphite; Human Umbilical Vein Endothelial Cells; Humans; Metal Nanoparticles; Mice; Microbial Sensitivity Tests; Nanocomposites; NIH 3T3 Cells; Polyglycolic Acid; Silver; Staphylococcus aureus; Tobramycin | 2019 |
Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms.
Topics: Alginates; Anti-Bacterial Agents; Biofilms; Cystic Fibrosis; Drug Carriers; Drug Design; Drug Therapy, Combination; Ferric Compounds; Humans; Magnetic Fields; Magnetite Nanoparticles; Microbial Sensitivity Tests; Particle Size; Pseudomonas aeruginosa; Pseudomonas Infections; Silver; Surface Properties; Tobramycin | 2020 |
Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients.
Topics: Anti-Bacterial Agents; Biofilms; Ciprofloxacin; Clindamycin; Doxycycline; Gentamicins; Humans; Metal Nanoparticles; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Silver; Staphylococcus aureus; Tobramycin | 2022 |
A novel label-free colorimetric polyA aptasensing approach based on cationic polymer and silver nanoparticles for detection of tobramycin in milk.
Topics: Animals; Aptamers, Nucleotide; Biosensing Techniques; Colorimetry; Gold; Limit of Detection; Metal Nanoparticles; Milk; Poly A; Polymers; Silver; Tobramycin | 2022 |
A sensitive surface-enhanced Raman spectroscopy detection for gentamicin and tobramycin using γ-Al
Topics: Anti-Bacterial Agents; Gentamicins; Metal Nanoparticles; Serum Albumin, Bovine; Silver; Spectrum Analysis, Raman; Tobramycin | 2023 |
Dual fluorescence-colorimetric sensor based on silver nanoparticles for determination of tobramycin in its pharmaceutical preparations.
Topics: Colorimetry; Fluorescein; Metal Nanoparticles; Pharmaceutical Preparations; Silver; Tobramycin | 2023 |