kainic acid and valine
kainic acid has been researched along with valine in 55 studies
Research
Studies (55)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 45 (81.82) | 18.7374 |
1990's | 2 (3.64) | 18.2507 |
2000's | 6 (10.91) | 29.6817 |
2010's | 2 (3.64) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors
Authors | Studies |
---|---|
Akerman, KE; Holopainen, I | 1 |
Aanonsen, LM; Wilcox, GL | 1 |
Fischbach, GD; O'Brien, RJ | 1 |
Bossut, D; Frenk, H; Mayer, DJ | 1 |
Christensen, BN; O'Dell, TJ | 1 |
Dingledine, R; Kleckner, NW; Verdoorn, TA | 1 |
Brugger, F; Olpe, HR; Pozza, MF; Steinmann, MW | 1 |
Chapman, B; Miller, KD; Stryker, MP | 1 |
Bowe, MA; Martin, D; Nadler, JV | 1 |
Miyachi, E; Murakami, M | 1 |
Lodge, D; Martin, D | 2 |
Martin, MR | 1 |
Baudry, M; Cummins, JT; Kessler, M; Lynch, G; Way, S | 1 |
Collins, JF; Stone, TW | 1 |
Ashwood, TJ; Wheal, HV | 2 |
Costa, E; Nicoletti, F; Wroblewski, JT | 1 |
Johnson, KM; Jones, SM; Snell, LD | 1 |
Ballanyi, K; Endres, W; Grafe, P; Serve, G | 1 |
Cherniack, NS; Mitra, J; Overholt, JL; Prabhakar, NR | 1 |
Drejer, J; Honoré, T; Schousboe, A | 1 |
Choi, DW; Koh, JY; Peters, S | 1 |
Hagihara, K; Hata, Y; Sato, H; Tsumoto, T | 1 |
Beart, PM; Headley, PM; Nicolopoulos, LS; West, DC | 1 |
Lason, W; McGinty, JF; Simpson, JN | 1 |
Kihara, M; Kubo, T | 1 |
Bockaert, J; Pin, JP; Van-Vliet, BJ | 1 |
Connick, JH; Stone, TW | 1 |
Carter, CJ; L'Heureux, R; Scatton, B | 1 |
Pastuszko, A; Wilson, DF | 1 |
Nishizaki, T; Okada, Y | 1 |
Dingledine, R; Verdoorn, TA | 1 |
Astier, H; Tapia-Arancibia, L | 1 |
Ben-Ari, Y; Cherubini, E; Neuman, R | 1 |
Raigorodsky, G; Urca, G | 1 |
Lovinger, DM; Weight, FF | 1 |
Lauritzen, M; Nicholson, C; Okada, Y; Rice, ME | 1 |
Benveniste, H; Diemer, NH; Hansen, AJ; Jørgensen, MB | 1 |
Ben-Ari, Y; Gho, M | 1 |
Collins, JF; Curry, K; Perkins, MN; Stone, TW | 1 |
Collins, JF; Parks, DA; Schwarcz, R | 1 |
Collingridge, GL; Kehl, SJ; McLennan, H | 1 |
Crunelli, V; Forda, S; Kelly, JS | 1 |
Dvorak, DR; Morgan, IG | 1 |
Mayer, ML; Westbrook, GL | 1 |
Gatherer, M; Sundstrom, LE | 1 |
Clarke, VR; Collingridge, GL | 1 |
Anderson, AE; Johnston, D; Leung, V; Lin, X; Shah, MM | 1 |
Henderson, Z; Jones, GA | 1 |
Coons, S; Ellsworth, K; Johnson, E; Kerrigan, JF; Kim, DY; Lue, LF; Nowak, L; Rekate, H; Rho, JM; St John, PA; Wu, J; Xu, L | 1 |
Bai, D; Gong, XQ; Zabek, RL | 1 |
Behl, C; Clement, AB; Endres, K; Fahrenholz, F; Hanstein, R; Nagel, H; Schröder, A | 1 |
Colbert, CM; Eskin, A; Pita-Almenar, JD; Zou, S | 1 |
Jiang, L; Kang, D; Kang, J | 1 |
Other Studies
55 other study(ies) available for kainic acid and valine
Article | Year |
---|---|
Efflux of 45calcium from cultured primary astrocytes: effects of glutamate receptor agonists and antagonists.
Topics: Animals; Animals, Newborn; Astrocytes; Calcium; Calcium Radioisotopes; Cells, Cultured; Excitatory Amino Acid Antagonists; Glutamates; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Valine | 1990 |
Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Drug Interactions; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Glutamates; Glutamic Acid; Injections, Spinal; Kainic Acid; Male; Mice; N-Methylaspartate; Norepinephrine; Oxadiazoles; Phencyclidine; Quisqualic Acid; Spinal Cord; Substance P; Tetrazoles; Valine | 1986 |
Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; In Vitro Techniques; Ion Channels; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Valine | 1986 |
Is substance P a primary afferent neurotransmitter for nociceptive input? IV. 2-Amino-5-phosphonovalerate (APV) and [D-Pro2,D-Trp7,9]-substance P exert different effects on behaviors induced by intrathecal substance P, strychnine and kainic acid.
Topics: 2-Amino-5-phosphonovalerate; Animals; Dose-Response Relationship, Drug; Drug Interactions; Injections, Spinal; Kainic Acid; Male; Morphine; Nociceptors; Pain; Peptide Fragments; Rats; Rats, Inbred Strains; Spinal Cord; Strychnine; Substance P; Valine | 1988 |
Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Calcium; Cations, Divalent; Cell Membrane Permeability; Cells, Cultured; Concanavalin A; Convulsants; Glutamates; Ibotenic Acid; Ictaluridae; Ion Channels; Kainic Acid; Membrane Potentials; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Valine; Zinc | 1989 |
N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Kainic Acid; N-Methylaspartate; Oocytes; Quinoxalines; Receptors, AMPA; Receptors, Glycine; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine | 1989 |
Excitatory amino acid receptors in rat locus coeruleus. An extracellular in vitro study.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; Locus Coeruleus; Magnesium; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Valine | 1989 |
Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Cats; Electric Conductivity; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Perception | 1989 |
A grease-gap method for studying the excitatory amino acid pharmacology of CA1 hippocampal pyramidal cells.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Electrophysiology; Female; Glutamates; Hippocampus; Ibotenic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Phencyclidine; Rats; Rats, Inbred Strains; Valine | 1989 |
Coexistence of NMDA and non-NMDA receptors on turtle horizontal cells revealed using isolated retina preparations.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Evoked Potentials, Visual; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Turtles; Valine | 1989 |
Ketamine acts as a non-competitive N-methyl-D-aspartate antagonist on frog spinal cord in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Kainic Acid; Ketamine; Magnesium; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana pipiens; Rana temporaria; Spinal Cord; Valine | 1985 |
Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the in vitro mouse cochlear nucleus.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cochlear Nerve; Dose-Response Relationship, Drug; Evoked Potentials; Female; Kainic Acid; Male; Mice; Mice, Inbred C3H; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Neurotransmitter; Valine; Vestibulocochlear Nerve | 1985 |
Induction of glutamate binding sites in hippocampal membranes by transient exposure to high concentrations of glutamate or glutamate analogs.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Binding Sites; Chlorides; Chromatography, High Pressure Liquid; Glutamates; Glutamic Acid; Hippocampus; Homocysteine; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Saponins; Sodium; Valine | 1986 |
Activity of beta-kainic acid on neocortical neurons in vivo and hippocampal neurons in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Dipeptides; Dose-Response Relationship, Drug; Evoked Potentials, Somatosensory; Hippocampus; Iontophoresis; Kainic Acid; Male; N-Methylaspartate; Neurons; Rats; Receptors, Neurotransmitter; Valine | 1986 |
Extracellular studies on the role of N-methyl-D-aspartate receptors in epileptiform activity recorded from the kainic acid-lesioned hippocampus.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Epilepsy; Hippocampus; In Vitro Techniques; Kainic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synaptic Transmission; Valine | 1986 |
Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Drug Synergism; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; Kainic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Sugar Phosphates; Valine; Veratridine | 1987 |
Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal [3H]norepinephrine release.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; N-Methylaspartate; Norepinephrine; Phencyclidine; Rats; Structure-Activity Relationship; Valine | 1987 |
Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Hydrogen-Ion Concentration; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Valine | 1986 |
Biphasic effect of quinolinate on frog spinal, but not rat cortical, neurones: N-methyl-D-aspartate-like depolarisation and a novel type of hyperpolarisation.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Drug Interactions; Gyrus Cinguli; Kainic Acid; Ketamine; Magnesium; Membrane Potentials; Motor Neurons; N-Methylaspartate; Pyridines; Quinolinic Acid; Quinolinic Acids; Rats; Valine | 1987 |
Respiratory and vasomotor effects of excitatory amino acid on ventral medullary surface.
Topics: 2-Amino-5-phosphonovalerate; Animals; Apnea; Aspartic Acid; Blood Pressure; Carotid Sinus; Cats; Female; Glutamates; Kainic Acid; Male; Medulla Oblongata; N-Methylaspartate; Oxadiazoles; Phrenic Nerve; Quisqualic Acid; Respiration; Vagotomy; Valine; Vasomotor System | 1987 |
Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Binding Sites; Cerebral Cortex; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Valine | 1987 |
The expression of N-methyl-D-aspartate-receptor-mediated component during epileptiform synaptic activity in hippocampus.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Anticonvulsants; Epilepsy; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synapses; Valine | 1987 |
Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; Mice; N-Methylaspartate; Neurons; Neurotoxins; Oxadiazoles; Quisqualic Acid; Valine | 1988 |
Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex.
Topics: 2-Amino-5-phosphonovalerate; Animals; Cats; Electric Stimulation; Evoked Potentials, Visual; Geniculate Bodies; Kainic Acid; Optic Chiasm; Photic Stimulation; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Pathways | 1988 |
An excitatory amino acid projection from ventromedial hypothalamus to periaqueductal gray in the rat: autoradiographic and electrophysiological evidence.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Autoradiography; Electric Stimulation; Kainic Acid; Male; N-Methylaspartate; Neural Pathways; Periaqueductal Gray; Rats; Rats, Inbred Strains; Reaction Time; Valine; Ventromedial Hypothalamic Nucleus | 1988 |
Effects of D-(-)-aminophosphonovalerate on behavioral and histological changes induced by systemic kainic acid.
Topics: 2-Amino-5-phosphonovalerate; Animals; Hippocampus; Injections, Intraperitoneal; Kainic Acid; Male; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Seizures; Valine | 1988 |
Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aorta; Blood Pressure; Glutamates; Glutamic Acid; Heart Rate; Kainic Acid; Male; Medulla Oblongata; Oxadiazoles; Pressoreceptors; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine | 1988 |
NMDA- and kainate-evoked GABA release from striatal neurones differentiated in primary culture: differential blocking by phencyclidine.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Corpus Striatum; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Phencyclidine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine | 1988 |
Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Cerebral Cortex; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Pyridines; Quinolinic Acid; Quinolinic Acids; Rats; Rats, Inbred Strains; Valine | 1988 |
Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: a trans-striatal dialysis study.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Atropine; Carbachol; Corpus Striatum; Dopamine; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin; Valine | 1988 |
Amino acids modulate calcium permeability of the plasma membrane of human neuroblastoma cells.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Aspartic Acid; Calcium; Cell Membrane Permeability; Cysteine; Humans; Kainic Acid; N-Methylaspartate; Neuroblastoma; Neurotransmitter Agents; Tumor Cells, Cultured; Valine | 1988 |
Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Glutamates; Guinea Pigs; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Oxygen Consumption; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spider Venoms; Valine | 1988 |
Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chlorides; Female; Ibotenic Acid; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Drug; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Xenopus | 1988 |
Glutamate stimulates somatostatin release from diencephalic neurons in primary culture.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Diencephalon; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Phencyclidine; Potassium; Quisqualic Acid; Rats; Somatostatin; Tetrodotoxin; Valine; Veratridine | 1988 |
Epileptiform bursts elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-D-aspartate antagonists.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Convulsants; Hippocampus; In Vitro Techniques; Kainic Acid; Kindling, Neurologic; N-Methylaspartate; Piperazines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine | 1988 |
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine | 1988 |
Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors.
Topics: 2-Amino-5-phosphonovalerate; Animals; Electrophysiology; Ganglia, Spinal; Glutamates; Glutamic Acid; Glycine; Kainic Acid; Magnesium; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine | 1988 |
Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cerebellum; Electric Stimulation; In Vitro Techniques; Kainic Acid; Magnesium; N-Methylaspartate; Neural Inhibition; Oxadiazoles; Quisqualic Acid; Turtles; Valine | 1988 |
Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia.
Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Extracellular Space; Hippocampus; Ischemic Attack, Transient; Kainic Acid; Male; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Valine | 1988 |
Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Calcium; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; Membrane Potentials; Neurons; Potassium; Rats; Synapses; Tetrodotoxin; Valine | 1988 |
Phosphonate analogues of carboxylic acids as aminoacid antagonists on rat cortical neurones.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Drug Antagonism; Electric Conductivity; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; N-Methylaspartate; Neurons; Organophosphorus Compounds; Rats; Valine | 1981 |
alpha-Amino-omega-phosphono carboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Brain Diseases; Hippocampus; Ibotenic Acid; Kainic Acid; Male; Neurotoxins; Oxazoles; Pyrrolidines; Rats; Rats, Inbred Strains; Structure-Activity Relationship; Valine | 1982 |
The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Dipeptides; Hippocampus; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Valine | 1983 |
Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Rats; Synapses; Valine | 1983 |
A physiologically active kainic acid-preferring receptor in chicken retina.
Topics: 2-Amino-5-phosphonovalerate; Aminobutyrates; Animals; Chickens; Dipeptides; Kainic Acid; Photoreceptor Cells; Pipecolic Acids; Receptors, Cell Surface; Receptors, Kainic Acid; Retina; Retinal Ganglion Cells; Synaptic Transmission; Valine | 1984 |
Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Culture Techniques; Electric Conductivity; Glutamates; Glutamic Acid; Homocysteine; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Spinal Cord; Valine | 1984 |
Mossy fibre innervation is not required for the development of kainic acid toxicity in organotypic hippocampal slice cultures.
Topics: Animals; Cell Death; Cell Survival; Hippocampus; In Vitro Techniques; Kainic Acid; Microelectrodes; Mossy Fibers, Hippocampal; N-Methylaspartate; Neural Pathways; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Time Factors; Valine | 1998 |
Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices.
Topics: Animals; Benzodiazepines; Dose-Response Relationship, Drug; Drug Interactions; Electric Impedance; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Agents; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; In Vitro Techniques; Isoxazoles; Kainic Acid; Membrane Potentials; Neural Inhibition; Propionates; Pyramidal Cells; Rats; Rats, Wistar; Receptors, Kainic Acid; Synaptic Transmission; Valine | 2004 |
Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons.
Topics: Analysis of Variance; Animals; Bicuculline; Blotting, Western; Cyclic Nucleotide-Gated Cation Channels; Dendrites; Electroencephalography; Entorhinal Cortex; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Immunohistochemistry; In Vitro Techniques; Ion Channels; Kainic Acid; Male; Membrane Potentials; Muscle Proteins; Neuronal Plasticity; Patch-Clamp Techniques; Potassium Channels; Pyramidal Cells; Pyrimidines; Rats; Rats, Sprague-Dawley; Seizures; Valine | 2004 |
GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Baclofen; Bicuculline; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Agonists; GABA Antagonists; In Vitro Techniques; Kainic Acid; Membrane Potentials; Neural Inhibition; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Propanolamines; Rats; Rats, Wistar; Receptors, GABA-A; Septum Pellucidum; Sodium Channel Blockers; Tetrodotoxin; Time Factors; Valine | 2005 |
Electrophysiological properties of human hypothalamic hamartomas.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anesthetics, Local; Bicuculline; Cadmium Chloride; Child; Child, Preschool; Drug Interactions; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Glutamate Decarboxylase; Glutamic Acid; Hamartoma; Humans; Hypothalamus; Immunohistochemistry; In Vitro Techniques; Infant; Isoenzymes; Kainic Acid; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Periodicity; Phosphopyruvate Hydratase; Potassium Channel Blockers; Tetraethylammonium; Tetrodotoxin; Valine | 2005 |
D-Serine inhibits AMPA receptor-mediated current in rat hippocampal neurons.
Topics: Action Potentials; Amino Acids; Aminobutyrates; Animals; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Kainic Acid; Molecular Structure; Neurons; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Serine; Stereoisomerism; Valine | 2007 |
Effects of neuron-specific ADAM10 modulation in an in vivo model of acute excitotoxic stress.
Topics: ADAM Proteins; ADAM10 Protein; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Analysis of Variance; Animals; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hippocampus; Indoles; Kainic Acid; Leucine; Membrane Proteins; Mice; Mice, Transgenic; Mutation; Neurons; Plant Lectins; Seizures; Stress, Physiological; Valine | 2008 |
Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP.
Topics: Alanine Transaminase; Analysis of Variance; Animals; Animals, Newborn; Aspartic Acid; Astrocytes; Biophysics; Biotinylation; Cells, Cultured; Colforsin; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Amino Acid Transporter 2; Excitatory Postsynaptic Potentials; Flow Cytometry; Glial Fibrillary Acidic Protein; Glutamates; Glutamic Acid; Glycine; Hippocampus; In Vitro Techniques; Indoles; Kainic Acid; Long-Term Potentiation; Male; Neurons; Protein Transport; Quinoxalines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Valine | 2012 |
Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.
Topics: Action Potentials; Animals; Animals, Newborn; Benzodiazepines; Biophysics; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Agents; GABAergic Neurons; Hippocampus; Humans; In Vitro Techniques; Kainic Acid; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Valine | 2015 |