Page last updated: 2024-08-21

kainic acid and valine

kainic acid has been researched along with valine in 55 studies

Research

Studies (55)

TimeframeStudies, this research(%)All Research%
pre-199045 (81.82)18.7374
1990's2 (3.64)18.2507
2000's6 (10.91)29.6817
2010's2 (3.64)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Akerman, KE; Holopainen, I1
Aanonsen, LM; Wilcox, GL1
Fischbach, GD; O'Brien, RJ1
Bossut, D; Frenk, H; Mayer, DJ1
Christensen, BN; O'Dell, TJ1
Dingledine, R; Kleckner, NW; Verdoorn, TA1
Brugger, F; Olpe, HR; Pozza, MF; Steinmann, MW1
Chapman, B; Miller, KD; Stryker, MP1
Bowe, MA; Martin, D; Nadler, JV1
Miyachi, E; Murakami, M1
Lodge, D; Martin, D2
Martin, MR1
Baudry, M; Cummins, JT; Kessler, M; Lynch, G; Way, S1
Collins, JF; Stone, TW1
Ashwood, TJ; Wheal, HV2
Costa, E; Nicoletti, F; Wroblewski, JT1
Johnson, KM; Jones, SM; Snell, LD1
Ballanyi, K; Endres, W; Grafe, P; Serve, G1
Cherniack, NS; Mitra, J; Overholt, JL; Prabhakar, NR1
Drejer, J; Honoré, T; Schousboe, A1
Choi, DW; Koh, JY; Peters, S1
Hagihara, K; Hata, Y; Sato, H; Tsumoto, T1
Beart, PM; Headley, PM; Nicolopoulos, LS; West, DC1
Lason, W; McGinty, JF; Simpson, JN1
Kihara, M; Kubo, T1
Bockaert, J; Pin, JP; Van-Vliet, BJ1
Connick, JH; Stone, TW1
Carter, CJ; L'Heureux, R; Scatton, B1
Pastuszko, A; Wilson, DF1
Nishizaki, T; Okada, Y1
Dingledine, R; Verdoorn, TA1
Astier, H; Tapia-Arancibia, L1
Ben-Ari, Y; Cherubini, E; Neuman, R1
Raigorodsky, G; Urca, G1
Lovinger, DM; Weight, FF1
Lauritzen, M; Nicholson, C; Okada, Y; Rice, ME1
Benveniste, H; Diemer, NH; Hansen, AJ; Jørgensen, MB1
Ben-Ari, Y; Gho, M1
Collins, JF; Curry, K; Perkins, MN; Stone, TW1
Collins, JF; Parks, DA; Schwarcz, R1
Collingridge, GL; Kehl, SJ; McLennan, H1
Crunelli, V; Forda, S; Kelly, JS1
Dvorak, DR; Morgan, IG1
Mayer, ML; Westbrook, GL1
Gatherer, M; Sundstrom, LE1
Clarke, VR; Collingridge, GL1
Anderson, AE; Johnston, D; Leung, V; Lin, X; Shah, MM1
Henderson, Z; Jones, GA1
Coons, S; Ellsworth, K; Johnson, E; Kerrigan, JF; Kim, DY; Lue, LF; Nowak, L; Rekate, H; Rho, JM; St John, PA; Wu, J; Xu, L1
Bai, D; Gong, XQ; Zabek, RL1
Behl, C; Clement, AB; Endres, K; Fahrenholz, F; Hanstein, R; Nagel, H; Schröder, A1
Colbert, CM; Eskin, A; Pita-Almenar, JD; Zou, S1
Jiang, L; Kang, D; Kang, J1

Other Studies

55 other study(ies) available for kainic acid and valine

ArticleYear
Efflux of 45calcium from cultured primary astrocytes: effects of glutamate receptor agonists and antagonists.
    Neuropharmacology, 1990, Volume: 29, Issue:8

    Topics: Animals; Animals, Newborn; Astrocytes; Calcium; Calcium Radioisotopes; Cells, Cultured; Excitatory Amino Acid Antagonists; Glutamates; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Valine

1990
Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice.
    Neuroscience letters, 1986, Jun-18, Volume: 67, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Drug Interactions; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Glutamates; Glutamic Acid; Injections, Spinal; Kainic Acid; Male; Mice; N-Methylaspartate; Norepinephrine; Oxadiazoles; Phencyclidine; Quisqualic Acid; Spinal Cord; Substance P; Tetrazoles; Valine

1986
Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986, Volume: 6, Issue:11

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; In Vitro Techniques; Ion Channels; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Valine

1986
Is substance P a primary afferent neurotransmitter for nociceptive input? IV. 2-Amino-5-phosphonovalerate (APV) and [D-Pro2,D-Trp7,9]-substance P exert different effects on behaviors induced by intrathecal substance P, strychnine and kainic acid.
    Brain research, 1988, Jul-12, Volume: 455, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Dose-Response Relationship, Drug; Drug Interactions; Injections, Spinal; Kainic Acid; Male; Morphine; Nociceptors; Pain; Peptide Fragments; Rats; Rats, Inbred Strains; Spinal Cord; Strychnine; Substance P; Valine

1988
Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors.
    Journal of neurophysiology, 1989, Volume: 61, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Calcium; Cations, Divalent; Cell Membrane Permeability; Cells, Cultured; Concanavalin A; Convulsants; Glutamates; Ibotenic Acid; Ictaluridae; Ion Channels; Kainic Acid; Membrane Potentials; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Valine; Zinc

1989
N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology.
    Molecular pharmacology, 1989, Volume: 35, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Kainic Acid; N-Methylaspartate; Oocytes; Quinoxalines; Receptors, AMPA; Receptors, Glycine; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1989
Excitatory amino acid receptors in rat locus coeruleus. An extracellular in vitro study.
    Naunyn-Schmiedeberg's archives of pharmacology, 1989, Volume: 339, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; Locus Coeruleus; Magnesium; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Valine

1989
Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors.
    Proceedings of the National Academy of Sciences of the United States of America, 1989, Volume: 86, Issue:13

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Cats; Electric Conductivity; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Perception

1989
A grease-gap method for studying the excitatory amino acid pharmacology of CA1 hippocampal pyramidal cells.
    Journal of neuroscience methods, 1989, Volume: 29, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Electrophysiology; Female; Glutamates; Hippocampus; Ibotenic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Phencyclidine; Rats; Rats, Inbred Strains; Valine

1989
Coexistence of NMDA and non-NMDA receptors on turtle horizontal cells revealed using isolated retina preparations.
    Vision research, 1989, Volume: 29, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Evoked Potentials, Visual; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Turtles; Valine

1989
Ketamine acts as a non-competitive N-methyl-D-aspartate antagonist on frog spinal cord in vitro.
    Neuropharmacology, 1985, Volume: 24, Issue:10

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Kainic Acid; Ketamine; Magnesium; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana pipiens; Rana temporaria; Spinal Cord; Valine

1985
Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the in vitro mouse cochlear nucleus.
    Hearing research, 1985, Volume: 20, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cochlear Nerve; Dose-Response Relationship, Drug; Evoked Potentials; Female; Kainic Acid; Male; Mice; Mice, Inbred C3H; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Neurotransmitter; Valine; Vestibulocochlear Nerve

1985
Induction of glutamate binding sites in hippocampal membranes by transient exposure to high concentrations of glutamate or glutamate analogs.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986, Volume: 6, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Binding Sites; Chlorides; Chromatography, High Pressure Liquid; Glutamates; Glutamic Acid; Hippocampus; Homocysteine; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Saponins; Sodium; Valine

1986
Activity of beta-kainic acid on neocortical neurons in vivo and hippocampal neurons in vitro.
    Neuroscience, 1986, Volume: 17, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Dipeptides; Dose-Response Relationship, Drug; Evoked Potentials, Somatosensory; Hippocampus; Iontophoresis; Kainic Acid; Male; N-Methylaspartate; Neurons; Rats; Receptors, Neurotransmitter; Valine

1986
Extracellular studies on the role of N-methyl-D-aspartate receptors in epileptiform activity recorded from the kainic acid-lesioned hippocampus.
    Neuroscience letters, 1986, Jun-18, Volume: 67, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Epilepsy; Hippocampus; In Vitro Techniques; Kainic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synaptic Transmission; Valine

1986
Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells.
    Journal of neurochemistry, 1987, Volume: 48, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Drug Synergism; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; Kainic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Sugar Phosphates; Valine; Veratridine

1987
Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal [3H]norepinephrine release.
    The Journal of pharmacology and experimental therapeutics, 1987, Volume: 240, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; N-Methylaspartate; Norepinephrine; Phencyclidine; Rats; Structure-Activity Relationship; Valine

1987
Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord.
    Neuroscience letters, 1986, Dec-03, Volume: 72, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Hydrogen-Ion Concentration; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Valine

1986
Biphasic effect of quinolinate on frog spinal, but not rat cortical, neurones: N-methyl-D-aspartate-like depolarisation and a novel type of hyperpolarisation.
    Neuroscience letters, 1987, Mar-31, Volume: 75, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Drug Interactions; Gyrus Cinguli; Kainic Acid; Ketamine; Magnesium; Membrane Potentials; Motor Neurons; N-Methylaspartate; Pyridines; Quinolinic Acid; Quinolinic Acids; Rats; Valine

1987
Respiratory and vasomotor effects of excitatory amino acid on ventral medullary surface.
    Brain research bulletin, 1987, Volume: 18, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Animals; Apnea; Aspartic Acid; Blood Pressure; Carotid Sinus; Cats; Female; Glutamates; Kainic Acid; Male; Medulla Oblongata; N-Methylaspartate; Oxadiazoles; Phrenic Nerve; Quisqualic Acid; Respiration; Vagotomy; Valine; Vasomotor System

1987
Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1987, Volume: 7, Issue:9

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Binding Sites; Cerebral Cortex; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Valine

1987
The expression of N-methyl-D-aspartate-receptor-mediated component during epileptiform synaptic activity in hippocampus.
    British journal of pharmacology, 1987, Volume: 91, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Anticonvulsants; Epilepsy; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synapses; Valine

1987
Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1988, Volume: 8, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; Mice; N-Methylaspartate; Neurons; Neurotoxins; Oxadiazoles; Quisqualic Acid; Valine

1988
Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex.
    Experimental brain research, 1988, Volume: 69, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Cats; Electric Stimulation; Evoked Potentials, Visual; Geniculate Bodies; Kainic Acid; Optic Chiasm; Photic Stimulation; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Pathways

1988
An excitatory amino acid projection from ventromedial hypothalamus to periaqueductal gray in the rat: autoradiographic and electrophysiological evidence.
    Neuroscience letters, 1988, Feb-29, Volume: 85, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Autoradiography; Electric Stimulation; Kainic Acid; Male; N-Methylaspartate; Neural Pathways; Periaqueductal Gray; Rats; Rats, Inbred Strains; Reaction Time; Valine; Ventromedial Hypothalamic Nucleus

1988
Effects of D-(-)-aminophosphonovalerate on behavioral and histological changes induced by systemic kainic acid.
    Neuroscience letters, 1988, Apr-22, Volume: 87, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Hippocampus; Injections, Intraperitoneal; Kainic Acid; Male; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Seizures; Valine

1988
Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii.
    Neuroscience letters, 1988, Apr-22, Volume: 87, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aorta; Blood Pressure; Glutamates; Glutamic Acid; Heart Rate; Kainic Acid; Male; Medulla Oblongata; Oxadiazoles; Pressoreceptors; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
NMDA- and kainate-evoked GABA release from striatal neurones differentiated in primary culture: differential blocking by phencyclidine.
    Neuroscience letters, 1988, Apr-22, Volume: 87, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Corpus Striatum; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Phencyclidine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo.
    British journal of pharmacology, 1988, Volume: 93, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Cerebral Cortex; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Pyridines; Quinolinic Acid; Quinolinic Acids; Rats; Rats, Inbred Strains; Valine

1988
Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: a trans-striatal dialysis study.
    Journal of neurochemistry, 1988, Volume: 51, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Atropine; Carbachol; Corpus Striatum; Dopamine; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin; Valine

1988
Amino acids modulate calcium permeability of the plasma membrane of human neuroblastoma cells.
    Cancer biochemistry biophysics, 1988, Volume: 9, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Aspartic Acid; Calcium; Cell Membrane Permeability; Cysteine; Humans; Kainic Acid; N-Methylaspartate; Neuroblastoma; Neurotransmitter Agents; Tumor Cells, Cultured; Valine

1988
Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig.
    Brain research, 1988, Jun-14, Volume: 452, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Glutamates; Guinea Pigs; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Oxygen Consumption; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spider Venoms; Valine

1988
Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Molecular pharmacology, 1988, Volume: 34, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chlorides; Female; Ibotenic Acid; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Drug; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Xenopus

1988
Glutamate stimulates somatostatin release from diencephalic neurons in primary culture.
    Endocrinology, 1988, Volume: 123, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Diencephalon; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Phencyclidine; Potassium; Quisqualic Acid; Rats; Somatostatin; Tetrodotoxin; Valine; Veratridine

1988
Epileptiform bursts elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-D-aspartate antagonists.
    Brain research, 1988, Sep-06, Volume: 459, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Convulsants; Hippocampus; In Vitro Techniques; Kainic Acid; Kindling, Neurologic; N-Methylaspartate; Piperazines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
    European journal of pharmacology, 1988, Aug-24, Volume: 153, Issue:2-3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine

1988
Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors.
    Neuroscience letters, 1988, Dec-05, Volume: 94, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Electrophysiology; Ganglia, Spinal; Glutamates; Glutamic Acid; Glycine; Kainic Acid; Magnesium; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum.
    Brain research, 1988, Dec-20, Volume: 475, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cerebellum; Electric Stimulation; In Vitro Techniques; Kainic Acid; Magnesium; N-Methylaspartate; Neural Inhibition; Oxadiazoles; Quisqualic Acid; Turtles; Valine

1988
Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia.
    Acta neurologica Scandinavica, 1988, Volume: 78, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Extracellular Space; Hippocampus; Ischemic Attack, Transient; Kainic Acid; Male; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Valine

1988
Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid.
    The Journal of physiology, 1988, Volume: 404

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Calcium; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Magnesium; Male; Membrane Potentials; Neurons; Potassium; Rats; Synapses; Tetrodotoxin; Valine

1988
Phosphonate analogues of carboxylic acids as aminoacid antagonists on rat cortical neurones.
    Neuroscience letters, 1981, May-29, Volume: 23, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Drug Antagonism; Electric Conductivity; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; N-Methylaspartate; Neurons; Organophosphorus Compounds; Rats; Valine

1981
alpha-Amino-omega-phosphono carboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus.
    Neuroscience letters, 1982, Nov-16, Volume: 33, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Brain Diseases; Hippocampus; Ibotenic Acid; Kainic Acid; Male; Neurotoxins; Oxazoles; Pyrrolidines; Rats; Rats, Inbred Strains; Structure-Activity Relationship; Valine

1982
The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro.
    The Journal of physiology, 1983, Volume: 334

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Dipeptides; Hippocampus; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Valine

1983
Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus.
    The Journal of physiology, 1983, Volume: 341

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Rats; Synapses; Valine

1983
A physiologically active kainic acid-preferring receptor in chicken retina.
    Neuroscience letters, 1984, Feb-24, Volume: 44, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Aminobutyrates; Animals; Chickens; Dipeptides; Kainic Acid; Photoreceptor Cells; Pipecolic Acids; Receptors, Cell Surface; Receptors, Kainic Acid; Retina; Retinal Ganglion Cells; Synaptic Transmission; Valine

1984
Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp.
    The Journal of physiology, 1984, Volume: 354

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Culture Techniques; Electric Conductivity; Glutamates; Glutamic Acid; Homocysteine; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Spinal Cord; Valine

1984
Mossy fibre innervation is not required for the development of kainic acid toxicity in organotypic hippocampal slice cultures.
    Neuroscience letters, 1998, Sep-04, Volume: 253, Issue:2

    Topics: Animals; Cell Death; Cell Survival; Hippocampus; In Vitro Techniques; Kainic Acid; Microelectrodes; Mossy Fibers, Hippocampal; N-Methylaspartate; Neural Pathways; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Time Factors; Valine

1998
Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices.
    Neuropharmacology, 2004, Volume: 47, Issue:3

    Topics: Animals; Benzodiazepines; Dose-Response Relationship, Drug; Drug Interactions; Electric Impedance; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Agents; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; In Vitro Techniques; Isoxazoles; Kainic Acid; Membrane Potentials; Neural Inhibition; Propionates; Pyramidal Cells; Rats; Rats, Wistar; Receptors, Kainic Acid; Synaptic Transmission; Valine

2004
Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons.
    Neuron, 2004, Oct-28, Volume: 44, Issue:3

    Topics: Analysis of Variance; Animals; Bicuculline; Blotting, Western; Cyclic Nucleotide-Gated Cation Channels; Dendrites; Electroencephalography; Entorhinal Cortex; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Immunohistochemistry; In Vitro Techniques; Ion Channels; Kainic Acid; Male; Membrane Potentials; Muscle Proteins; Neuronal Plasticity; Patch-Clamp Techniques; Potassium Channels; Pyramidal Cells; Pyrimidines; Rats; Rats, Sprague-Dawley; Seizures; Valine

2004
GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
    Neuroscience, 2005, Volume: 132, Issue:3

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Baclofen; Bicuculline; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Agonists; GABA Antagonists; In Vitro Techniques; Kainic Acid; Membrane Potentials; Neural Inhibition; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Propanolamines; Rats; Rats, Wistar; Receptors, GABA-A; Septum Pellucidum; Sodium Channel Blockers; Tetrodotoxin; Time Factors; Valine

2005
Electrophysiological properties of human hypothalamic hamartomas.
    Annals of neurology, 2005, Volume: 58, Issue:3

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anesthetics, Local; Bicuculline; Cadmium Chloride; Child; Child, Preschool; Drug Interactions; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Glutamate Decarboxylase; Glutamic Acid; Hamartoma; Humans; Hypothalamus; Immunohistochemistry; In Vitro Techniques; Infant; Isoenzymes; Kainic Acid; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Periodicity; Phosphopyruvate Hydratase; Potassium Channel Blockers; Tetraethylammonium; Tetrodotoxin; Valine

2005
D-Serine inhibits AMPA receptor-mediated current in rat hippocampal neurons.
    Canadian journal of physiology and pharmacology, 2007, Volume: 85, Issue:5

    Topics: Action Potentials; Amino Acids; Aminobutyrates; Animals; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Kainic Acid; Molecular Structure; Neurons; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Serine; Stereoisomerism; Valine

2007
Effects of neuron-specific ADAM10 modulation in an in vivo model of acute excitotoxic stress.
    Neuroscience, 2008, Mar-18, Volume: 152, Issue:2

    Topics: ADAM Proteins; ADAM10 Protein; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Analysis of Variance; Animals; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hippocampus; Indoles; Kainic Acid; Leucine; Membrane Proteins; Mice; Mice, Transgenic; Mutation; Neurons; Plant Lectins; Seizures; Stress, Physiological; Valine

2008
Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP.
    Learning & memory (Cold Spring Harbor, N.Y.), 2012, Nov-19, Volume: 19, Issue:12

    Topics: Alanine Transaminase; Analysis of Variance; Animals; Animals, Newborn; Aspartic Acid; Astrocytes; Biophysics; Biotinylation; Cells, Cultured; Colforsin; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Amino Acid Transporter 2; Excitatory Postsynaptic Potentials; Flow Cytometry; Glial Fibrillary Acidic Protein; Glutamates; Glutamic Acid; Glycine; Hippocampus; In Vitro Techniques; Indoles; Kainic Acid; Long-Term Potentiation; Male; Neurons; Protein Transport; Quinoxalines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Valine

2012
Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.
    Neuroscience, 2015, Jul-09, Volume: 298

    Topics: Action Potentials; Animals; Animals, Newborn; Benzodiazepines; Biophysics; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Agents; GABAergic Neurons; Hippocampus; Humans; In Vitro Techniques; Kainic Acid; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Valine

2015
chemdatabank.com