Page last updated: 2024-09-04

cyc 202 and lapatinib

cyc 202 has been researched along with lapatinib in 11 studies

Compound Research Comparison

Studies
(cyc 202)
Trials
(cyc 202)
Recent Studies (post-2010)
(cyc 202)
Studies
(lapatinib)
Trials
(lapatinib)
Recent Studies (post-2010) (lapatinib)
97973931,9193051,442

Protein Interaction Comparison

ProteinTaxonomycyc 202 (IC50)lapatinib (IC50)
Bile salt export pumpHomo sapiens (human)7.375
Epidermal growth factor receptorHomo sapiens (human)0.0827
Receptor tyrosine-protein kinase erbB-2Homo sapiens (human)0.0537
Platelet-derived growth factor receptor betaHomo sapiens (human)8.5
D(1A) dopamine receptorSus scrofa (pig)0.06
Potassium voltage-gated channel subfamily H member 2Homo sapiens (human)1
Receptor tyrosine-protein kinase erbB-4Homo sapiens (human)0.1659
Alpha-1A adrenergic receptor Sus scrofa (pig)0.06
Broad substrate specificity ATP-binding cassette transporter ABCG2Homo sapiens (human)3.2

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (18.18)29.6817
2010's7 (63.64)24.3611
2020's2 (18.18)2.80

Authors

AuthorsStudies
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP1
Atteridge, CE; Campbell, BT; Chan, KW; Ciceri, P; Davis, MI; Edeen, PT; Faraoni, R; Floyd, M; Gallant, P; Herrgard, S; Hunt, JP; Karaman, MW; Lockhart, DJ; Milanov, ZV; Morrison, MJ; Pallares, G; Patel, HK; Pritchard, S; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Russu, WA; Shallal, HM1
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR1
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP1
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR1
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR1
Bareford, MD; Dent, P; Eulitt, P; Hossein, H; Martin, AP; Mitchell, C; Nephew, KP; Yacoub, A; Yang, C1
Crews, LA; Gonzales, T; Kouznetsova, VL; Masliah, E; Overk, CR; Patrick, C; Paulino, A; Price, D; Rockenstein, E; Stocking, E; Tsigelny, IF; Wrasidlo, W1
Cloyd, JM; Du, S; Mao, Y; Pawlik, TM; Xiao, Y; Xu, G; Zhang, B1

Other Studies

11 other study(ies) available for cyc 202 and lapatinib

ArticleYear
A small molecule-kinase interaction map for clinical kinase inhibitors.
    Nature biotechnology, 2005, Volume: 23, Issue:3

    Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines

2005
A quantitative analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2008, Volume: 26, Issue:1

    Topics: Binding Sites; Enzyme Activation; Humans; Phosphotransferases; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Proteome; Quantitative Structure-Activity Relationship

2008
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; Stereoisomerism; Structure-Activity Relationship

2011
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Highly predictive and interpretable models for PAMPA permeability.
    Bioorganic & medicinal chemistry, 2017, 02-01, Volume: 25, Issue:3

    Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine

2017
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
    Bioorganic & medicinal chemistry, 2019, 07-15, Volume: 27, Issue:14

    Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility

2019
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Scientific reports, 2020, 11-26, Volume: 10, Issue:1

    Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States

2020
Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo.
    Cancer biology & therapy, 2010, Nov-01, Volume: 10, Issue:9

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; Blotting, Western; Breast Neoplasms; Cell Death; Cell Line, Tumor; Cyclin-Dependent Kinases; Drug Synergism; Electrophoresis, Polyacrylamide Gel; ErbB Receptors; Female; Flavonoids; Fluorescent Antibody Technique; Gene Knockout Techniques; Humans; Indoles; Lapatinib; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Molecular Targeted Therapy; Myeloid Cell Leukemia Sequence 1 Protein; Piperidines; Proto-Oncogene Proteins c-bcl-2; Purines; Pyrroles; Quinazolines; Roscovitine

2010
Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders.
    British journal of pharmacology, 2014, Volume: 171, Issue:24

    Topics: AIDS Dementia Complex; Animals; Antineoplastic Agents; Cyclin-Dependent Kinase 5; Dasatinib; Erlotinib Hydrochloride; Flavonoids; HIV Envelope Protein gp120; In Vitro Techniques; Indoles; Lapatinib; Mice; Mice, Transgenic; Neurodegenerative Diseases; Neurons; Neuroprotective Agents; Protein Kinase Inhibitors; Purines; Pyrimidines; Pyrroles; Quinazolines; Rats; Roscovitine; Sunitinib; Thiazoles

2014
Gene signature and connectivity mapping to assist with drug prediction for pancreatic ductal adenocarcinoma.
    Surgical oncology, 2022, Volume: 44

    Topics: Aurora Kinase A; Biomarkers, Tumor; Carcinoma, Pancreatic Ductal; Computational Biology; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Regulatory Networks; Genome-Wide Association Study; Humans; Lapatinib; Pancreatic Neoplasms; Prospective Studies; Protein Kinase Inhibitors; Proto-Oncogene Proteins p21(ras); RNA; Roscovitine; Serine; Threonine; Trypsin

2022