adenosine and naproxen
adenosine has been researched along with naproxen in 7 studies
Research
Studies (7)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (14.29) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 5 (71.43) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Brunsden, AM; Grundy, D | 1 |
Balimane, PV; Frost, CE; Gan, J; Han, YH; He, K; Herbst, JJ; Humphreys, WG; Kolb, J; Shou, W; Wang, L; Zhang, D | 1 |
Reviews
1 review(s) available for adenosine and naproxen
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
Other Studies
6 other study(ies) available for adenosine and naproxen
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Sensitization of visceral afferents to bradykinin in rat jejunum in vitro.
Topics: Adenosine; Animals; Bradykinin; Bucladesine; Cyclooxygenase Inhibitors; Dinoprostone; Histamine; Histamine Antagonists; Histamine H2 Antagonists; In Vitro Techniques; Jejunum; Male; Membrane Potentials; Naproxen; Neurons, Afferent; Piperidines; Ranitidine; Rats; Rats, Inbred Strains; Serotonin; Stimulation, Chemical; Triazines; Triazoles; Xanthines | 1999 |
Characterization of efflux transporters involved in distribution and disposition of apixaban.
Topics: Adenosine; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Cell Line, Transformed; Cell Membrane Permeability; Cyclosporine; Digoxin; Diketopiperazines; Dose-Response Relationship, Drug; Drug Interactions; Fibrinolytic Agents; Heterocyclic Compounds, 4 or More Rings; Humans; Ketoconazole; Male; Naproxen; Neoplasm Proteins; Pyrazoles; Pyridones; Rats | 2013 |