Target type: molecularfunction
Catalysis of the reaction: L-lysyl-[protein] + NAD+ = H+ + N(6)-(ADP-D-ribosyl)-L-lysyl-[protein] + nicotinamide. [PMID:25043379, RHEA:58220]
NAD+-protein-lysine ADP-ribosyltransferase activity refers to the enzymatic process where an ADP-ribose moiety derived from nicotinamide adenine dinucleotide (NAD+) is transferred to a specific lysine residue on a target protein. This activity is catalyzed by a family of enzymes called ADP-ribosyltransferases (ARTs).
The molecular function of NAD+-protein-lysine ADP-ribosyltransferase activity involves the following steps:
1. **NAD+ Binding:** The enzyme binds NAD+ in its active site, typically through interactions with the adenine and nicotinamide moieties.
2. **Lysine Recognition:** The enzyme recognizes and interacts with the specific lysine residue on the target protein. This recognition can be influenced by the amino acid sequence surrounding the lysine residue and/or by structural features of the target protein.
3. **ADP-Ribosyl Transfer:** The enzyme catalyzes the transfer of the ADP-ribose moiety from NAD+ to the ε-amino group of the lysine residue on the target protein. This transfer reaction involves breaking the glycosidic bond between the nicotinamide and ribose moieties of NAD+, leaving a free nicotinamide molecule and an ADP-ribose moiety attached to the lysine residue.
The addition of ADP-ribose to a protein can significantly alter its function, typically by:
* **Altering Protein Activity:** ADP-ribosylation can either activate or inhibit the target protein's function, depending on the specific enzyme and target protein.
* **Modulating Protein-Protein Interactions:** ADP-ribosylation can change the conformation of the target protein and affect its ability to interact with other proteins.
* **Promoting Protein Degradation:** ADP-ribosylation can mark proteins for degradation by the proteasome, a cellular machinery responsible for removing damaged or unwanted proteins.
The molecular function of NAD+-protein-lysine ADP-ribosyltransferase activity is involved in a wide range of cellular processes, including signal transduction, DNA repair, cell cycle regulation, and immune response. Dysregulation of ADP-ribosyltransferase activity has been implicated in various human diseases, such as cancer, neurodegenerative disorders, and inflammatory diseases.'
"
Protein | Definition | Taxonomy |
---|---|---|
Protein mono-ADP-ribosyltransferase PARP3 | A protein mono-ADP-ribosyltransferase PARP3 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q9Y6F1] | Homo sapiens (human) |
Protein mono-ADP-ribosyltransferase PARP11 | A protein mono-ADP-ribosyltransferase PARP11 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q9NR21] | Homo sapiens (human) |
NAD-dependent protein deacetylase sirtuin-6 | An NAD-dependent protein deacylase sirtuin-6 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q8N6T7] | Homo sapiens (human) |
Protein mono-ADP-ribosyltransferase PARP16 | A protein mono-ADP-ribosyltransferase PARP16 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q8N5Y8] | Homo sapiens (human) |
Protein mono-ADP-ribosyltransferase PARP10 | A protein mono-ADP-ribosyltransferase PARP10 that is encoded in the genome of human. [PRO:DNx, UniProtKB:Q53GL7] | Homo sapiens (human) |
Compound | Definition | Classes | Roles |
---|---|---|---|
niacinamide | nicotinamide : A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. | pyridine alkaloid; pyridinecarboxamide; vitamin B3 | anti-inflammatory agent; antioxidant; cofactor; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor; EC 3.5.1.98 (histone deacetylase) inhibitor; Escherichia coli metabolite; geroprotector; human urinary metabolite; metabolite; mouse metabolite; neuroprotective agent; Saccharomyces cerevisiae metabolite; Sir2 inhibitor |
pyrazinamide | pyrazinecarboxamide : A monocarboxylic acid amide resulting from the formal condensation of the carboxy group of pyrazinoic acid (pyrazine-2-carboxylic acid) with ammonia. A prodrug for pyrazinoic acid, pyrazinecarboxamide is used as part of multidrug regimens for the treatment of tuberculosis. | monocarboxylic acid amide; N-acylammonia; pyrazines | antitubercular agent; prodrug |
pyrazinoic acid | pyrazine-2-carboxylic acid : The parent compound of the class of pyrazinecarboxylic acids, that is pyrazine bearing a single carboxy substituent. The active metabolite of the antitubercular drug pyrazinamide. pyrazinoic acid: active metabolite of pyrazinamide; structure | pyrazinecarboxylic acid | antitubercular agent; drug metabolite |
pj-34 | PJ34 : A member of the class of phenanthridines that is 5,6-dihydrophenanthridine substituted at positions 2 and 6 by (N,N-dimethylglycyl)amino and oxo groups, respectively. It is a potent inhibitor of poly(ADP-ribose) polymerases PARP1 and PARP2 (IC50 of 110 nM and 86 nM, respectively) and exhibits anti-cancer, cardioprotective and neuroprotective properties. | phenanthridines; secondary carboxamide; tertiary amino compound | angiogenesis inhibitor; anti-inflammatory agent; antiatherosclerotic agent; antineoplastic agent; apoptosis inducer; cardioprotective agent; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor; neuroprotective agent |
3-aminobenzoic acid | 3-aminobenzoic acid : An aminobenzoic acid carrying an amino group at position 3. 3-aminobenzoic acid: RN given refers to parent cpd | aminobenzoic acid | |
4-Methoxybenzamide | benzamides | ||
1-(4-nitrophenyl)piperazine | 1-(4-nitrophenyl)piperazine: structure in first source | ||
rubimaillin | rubimaillin : A benzochromene that is 2H-benzo[h]chromene which is substituted by two methyl groups at position 2, a methoxycarbonyl group at position 5, and a hydroxy group at position 6. Found in the Chinese medical plant Rubia cordifola, It has an anti-cancer effect by inhibition of TNF-alpha-induced NF-kappaB activation. It is also a dual inhibitor of acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), but is more selective for the ACAT2 isozyme. rubimaillin: structure given in first source | benzochromene; methyl ester; phenols | acyl-CoA:cholesterol acyltransferase 2 inhibitor; anti-inflammatory agent; antineoplastic agent; apoptosis inducer; neuroprotective agent; NF-kappaB inhibitor; plant metabolite |
3,4-dihydro-5-methyl-1(2h)-isoquinolinone | 3,4-dihydro-5-methyl-1(2H)-isoquinolinone: structure given in first source | isoquinolines | |
1-oxo-1,2,3,4-tetrahydroisoquinoline | 1-oxo-1,2,3,4-tetrahydroisoquinoline: structure given in first source | ||
5-chloropyrazinamide | |||
trichostatin a | trichostatin A: chelates zinc ion in the active site of histone deacetylases, resulting in preventing histone unpacking so DNA is less available for transcription; do not confuse with TRICHOSANTHIN which is a protein; found in STREPTOMYCES | antibiotic antifungal agent; hydroxamic acid; trichostatin | bacterial metabolite; EC 3.5.1.98 (histone deacetylase) inhibitor; geroprotector |
(3R,5S)-fluvastatin | (3R,5S)-fluvastatin : A (6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid diastereoisomer in which the stereocentres beta- and delta- to the carboxy group have R and S configuration, respectively. The drug fluvastatin is an equimolar mixture of this compound and its enantiomer. | (6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid; statin (synthetic) | |
rucaparib | AG14447: Poly(ADP-ribose) polymerase inhibitor; structure in first source | azepinoindole; caprolactams; organofluorine compound; secondary amino compound | antineoplastic agent; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor |
latonduine a | latonduine A: structure in first source | ||
veliparib | benzimidazoles | EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor | |
olaparib | cyclopropanes; monofluorobenzenes; N-acylpiperazine; phthalazines | antineoplastic agent; apoptosis inducer; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor | |
niraparib | 2-[4-(piperidin-3-yl)phenyl]-2H-indazole-7-carboxamide : A member of the class of indazoles that is 2H-indazole substituted by 4-(piperidin-3-yl)phenyl and aminocarbonyl groups at positions 2 and 7, respectively. It is a potent PARP1 inhibitor with IC50 of 3.2 nM. | benzenes; indazoles; piperidines; primary carboxamide | antineoplastic agent; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor |
niraparib | niraparib : A 2-[4-(piperidin-3-yl)phenyl]-2H-indazole-7-carboxamide that has S-configuration. It is a potent inhibitor of PARP1 and PARP2 (IC50 of 3.8 and 2.1 nM, respectively) and approved as a first-line maintenance treatment for women with advanced ovarian cancer after responding to platinum-based chemotherapy. niraparib: structure in first source | 2-[4-(piperidin-3-yl)phenyl]-2H-indazole-7-carboxamide | antineoplastic agent; apoptosis inducer; EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor; radiosensitizing agent |
ly2784544 | pyridazines | ||
g007-lk | G007-LK: potent and specific small-molecule tankyrase inhibitor; structure in first source | ||
xav939 | XAV939 : A thiopyranopyrimidine in which a 7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine skeleton is substituted at C-4 by a hydroxy group and at C-2 by a para-(trifluoromethyl)phenyl group. XAV939: selectively inhibits beta-catenin-mediated transcription; structure in first source | (trifluoromethyl)benzenes; thiopyranopyrimidine | tankyrase inhibitor |
bmn 673 | talazoparib: inhibits both PARP1 and PARP2; structure in first source | ||
me0328 | ME0328: inhibits ARTD3; structure in first source |