thymosin and Cicatrix
thymosin has been researched along with Cicatrix* in 3 studies
Other Studies
3 other study(ies) available for thymosin and Cicatrix
Article | Year |
---|---|
Thymosin β4 and the anti-fibrotic switch
Wound healing involves a rapid response to the injury by circulating cells, followed by inflammation with an influx of inflammatory cells that release various factors. Soon after, cellular proliferation begins to replace the damaged cells and extracellular matrix, and then tissue remodeling restores normal tissue function. Various factors can lead to pathological wound healing when excessive and irreversible connective tissue/extracellular matrix deposition occurs, resulting in fibrosis. The process is initiated when immune cells, such as macrophages, release soluble factors that stimulate fibroblasts. TGFβ is the most well-characterized macrophage derived pro-fibrotic mediator. Other soluble mediators of fibrosis include connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and interleukin 10 (IL-10). Thymosin β4 (Tβ4) has shown therapeutic benefit in preventing fibrosis/scarring in various animal models of fibrosis/scarring. The mechanism of action of Tβ4 appears related, in part, to a reduction in the inflammatory response, including a reduction in macrophage infiltration, decreased levels of TGFβ and IL-10, and reduced CTGF activation, resulting in both prevention of fibroblast conversion to myofibroblasts and production of normally aligned collagen fibers. The amino N-terminal end of Tβ4, SDKP (serine-aspartate-lysine-proline), appears to contain the majority of anti-fibrotic activity and has shown excellent efficacy in many animal models of fibrosis, including liver, lung, heart, and kidney fibrosis. Ac-SDKP not only prevents fibrosis but can reverse fibrosis. Unanswered questions and future directions will be presented with regard to therapeutic uses alone and in combination with already approved drugs for fibrosis. Topics: Animals; Cicatrix; Fibrosis; Interleukin-10; Thymosin; Transforming Growth Factor beta | 2023 |
Thymosin beta 4: A potential novel adjunct treatment for bacterial keratitis.
Microbial keratitis is a rapidly progressing, visually debilitating infection of the cornea that can lead to corneal scarring, endophthalmitis, and perforation. Corneal opacification or scarring, a complication of keratitis, is among the leading causes of legal blindness worldwide, second to cataracts.Pseudomonas aeruginosaandStaphylococcus aureusare the two bacteria most commonly associated with this type of infection. Risk factors include patients who are immunocompromised, those who have undergone refractive corneal surgery, and those with prior penetrating keratoplasty, as well as extended wear contact lens users. Current treatment of microbial keratitis primarily addresses the pathogen using antibiotics. Bacterial clearance is of utmost importance yet does not guarantee good visual outcome. Clinicians are often left to rely upon the eye's innate ability to heal itself, as there are limited options beyond antibiotics and corticosteroids for treating patients with corneal infection. Beyond antibiotics, agents in use, such as lubricating ointments, artificial tears, and anti-inflammatory drops, do not fully accommodate clinical needs and have many potential harmful complications. To this end, treatments are needed that both regulate the inflammatory response and promote corneal wound healing to resolve visual disturbances and improve quality of life. Thymosin beta 4 is a small, naturally occurring 43-amino-acid protein that promotes wound healing and reduces corneal inflammation and is currently in Phase 3 human clinical trials for dry eye disease. Our previous work has shown that topical Tβ4 as an adjunct to ciprofloxacin treatment reduces inflammatory mediators and inflammatory cell infiltrates (neutrophils/PMN and macrophages) while enhancing bacterial killing and wound healing pathway activation in an experimental model ofP. aeruginosa-induced keratitis. Adjunctive thymosin beta 4 treatment holds novel therapeutic potential to regulate and, optimally, resolve disease pathogenesis in the cornea and perhaps other infectious and immune-based inflammatory disease. We plan to establish the importance of thymosin beta 4 as a therapeutic agent in conjunction with antibiotics with high impact for immediate clinical development. Topics: Anti-Bacterial Agents; Bacteria; Cicatrix; Cornea; Corneal Injuries; Eye Infections, Bacterial; Humans; Keratitis; Quality of Life; Thymosin | 2023 |
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts,which represent 50%of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. Topics: Animals; Biomarkers; Cell Lineage; Cell Transdifferentiation; Cellular Reprogramming; Cicatrix; Female; Fibroblasts; GATA4 Transcription Factor; Gene Expression Regulation; Genetic Vectors; Heart; Male; MEF2 Transcription Factors; Mice; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Myogenic Regulatory Factors; Regenerative Medicine; T-Box Domain Proteins; Thymosin | 2012 |