pbox-6 and Neoplasms

pbox-6 has been researched along with Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for pbox-6 and Neoplasms

ArticleYear
Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce apoptosis in multi-drug-resistant cancer cells.
    Cancer chemotherapy and pharmacology, 2010, Volume: 66, Issue:3

    The development of multi-drug resistance (MDR) due to the expression of members of the ATP binding cassette (ABC) transporter family is a major obstacle in cancer treatment. The broad range of substrate specificities associated with these transporters leads to the efflux of many anti-cancer drugs from tumour cells. Therefore, the development of new chemotherapeutic agents that are not substrates of these transporters is important. We have recently demonstrated that some members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds are microtubule-depolymerising agents that potently induce apoptosis in several cancer cell lines and impair growth of mouse breast tumours. The aim of this current study was to establish whether PBOXs were capable of inducing apoptosis in cancer cells expressing either P-glycoprotein or breast cancer resistance protein (BCRP), two of the main ABC transporters associated with MDR.. We performed in vitro studies to assess the effects of PBOXs on cell proliferation, cell cycle and apoptosis in human cancer cell lines and their drug-resistant substrains expressing either P-glycoprotein or BCRP. In addition, we performed a preliminary molecular docking study to examine interactions between PBOXs and P-glycoprotein.. We established that three representative PBOXs, PBOX-6, -15 and -16 were capable of inducing apoptosis in drug-resistant HL60-MDR1 cells (expressing P-glycoprotein) and HL60-ABCG2 cells (expressing BCRP) with similar potencies as in parental human promyelocytic leukaemia HL60 cells. Likewise, resistance to PBOX-6 and -16 was not evident in P-glycoprotein-expressing A2780-ADR cells in comparison with parent human ovarian carcinoma A2780 cells. Finally, we deduced by molecular docking that PBOX-6 is not likely to form favourable interactions with the substrate binding site of P-glycoprotein.. Our results suggest that pro-apoptotic PBOX compounds may be potential candidates for the treatment of P-glycoprotein- or BCRP-associated MDR cancers.

    Topics: Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Benzazepines; Carbamates; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Multiple; Drug Resistance, Neoplasm; HL-60 Cells; Humans; Microtubules; Neoplasm Proteins; Neoplasms; Oxazepines; Pyrroles; Tubulin Modulators

2010
BubR1 is required for a sustained mitotic spindle checkpoint arrest in human cancer cells treated with tubulin-targeting pyrrolo-1,5-benzoxazepines.
    Molecular pharmacology, 2008, Volume: 73, Issue:2

    Intrinsic or acquired resistance to chemotherapy is a major clinical problem that has evoked the need to develop innovative approaches to predict and ultimately reverse drug resistance. A prolonged G(2)M arrest has been associated with apoptotic resistance to various microtubule-targeting agents (MTAs). In this study, we describe the functional significance of the mitotic spindle checkpoint proteins, BubR1 and Bub3, in maintaining a mitotic arrest after microtubule disruption by nocodazole and a novel series of MTAs, the pyrrolo-1,5-benzoxazepines (PBOXs), in human cancer cells. Cells expressing high levels of BubR1 and Bub3 (K562, MDA-MB-231, and HeLa) display a prolonged G(2)M arrest after exposure to MTAs. On the other hand, cells with low endogenous levels of mitotic spindle checkpoint proteins (SK-BR-3 and HL-60) transiently arrest in mitosis and undergo increased apoptosis. The phosphorylation of BubR1 correlated with PBOX-induced G(2)M arrest in four cell lines tested, indicating an active mitotic spindle checkpoint. Gene silencing of BubR1 by small interfering RNA interference reduced PBOX-induced G(2)M arrest without enhancing apoptotic efficacy. Further analysis demonstrated that PBOX-treated BubR1-depleted cells were both mononucleated and multinucleated with a polyploid DNA content, suggesting a requirement for BubR1 in cytokinesis. Taken together, these results suggest that BubR1 contributes to the mitotic checkpoint induced by the PBOXs.

    Topics: Apoptosis; Cell Line, Tumor; HL-60 Cells; Humans; K562 Cells; Mitosis; Neoplasms; Oxazepines; Protein Serine-Threonine Kinases; Pyrroles; Spindle Apparatus; Tubulin

2008