ns-7 and Hypoxia
ns-7 has been researched along with Hypoxia* in 2 studies
Other Studies
2 other study(ies) available for ns-7 and Hypoxia
Article | Year |
---|---|
A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices.
The substance 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride (NS-7) has been developed recently as a cerebroprotective compound with Na+ and Ca2+ channel blocking action. In the present study, the effect of NS-7 in an in vitro model of hypoxic injury was examined and the possible involvement of Na+ and Ca2+ channels in the hypoxic injury subsequently determined. When slices of rat cerebral cortex were exposed to hypoxia/glucose deprivation followed by reoxygenation and restoration of the glucose supply, marked leakage of lactate dehydrogenase (LDH) occurred 3-6 h after reoxygenation. This hypoxia/reoxygenation-induced injury was blocked almost completely by the removal of extracellular Ca2+ or by chelating intracellular Ca2+ with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM). In addition, combined treatment with the N-type Ca2+ channel blocker omega-conotoxin GVIA and the P/Q-type Ca2+ channel blocker omega-agatoxin IVA significantly reduced LDH leakage, although neither of these Ca2+ channel blockers alone, nor nimodipine, an L-type Ca2+ channel blocker, was effective. On the other hand, several Na+ channel blockers, including tetrodotoxin, local anaesthetics and antiepileptics, significantly reduced the hypoxic injury. NS-7 (3-30 microM) concentration-dependently inhibited LDH leakage caused by hypoxia/reoxygenation, but had no influence on the reduction of tissue ATP content and energy charge during hypoxia and glucose deprivation. It is suggested that blockade of Na+ and Ca2+ channels is implicated in the cerebroprotective action of NS-7. Topics: Adenosine Triphosphate; Anesthetics; Animals; Anticonvulsants; Calcium; Calcium Channel Blockers; Cerebral Cortex; Dose-Response Relationship, Drug; Glucose; Hypoxia; In Vitro Techniques; Male; Neuroprotective Agents; Oxygen; Oxygen Consumption; Pyrimidines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Time Factors | 1998 |
Inhibition of ischemia-induced fodrin breakdown by a novel phenylpyrimidine derivative NS-7: an implication for its neuroprotective action in rats with middle cerebral artery occlusion.
The effect of a novel neuroprotective compound, NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride], on ischemia-induced fodrin breakdown was examined both in vitro and in vivo. The fodrin breakdown was measured by western blot followed by a densitometric analysis. In slices of the rat cerebral cortex, a pronounced fodrin breakdown was observed under hypoxic and hypoglycemic conditions. The enhancement of fodrin breakdown was completely blocked by omission of extracellular Ca2+ and significantly inhibited by calpain inhibitors such as E-64 and calpain inhibitor-I, thereby suggesting that the fodrin breakdown induced by hypoxia/hypoglycemia is due to the activation of Ca2+-stimulated neutral protease calpain. NS-7 (1-30 microM) produced a concentration-dependent inhibition of hypoxia/hypoglycemia-induced fodrin breakdown. In rats with unilateral middle cerebral artery occlusion (MCAO), a pronounced fodrin breakdown was observed in the cerebral cortex and striatum, although the time course for the development of the fodrin breakdown was much slower in the cerebral cortex than in the striatum. NS-7 (0.5 mg/kg i.v.), when injected immediately after MCAO, suppressed not only the fodrin breakdown but also the infarction in the cerebral cortex. From these results it is suggested that inhibition of calpain activation is implicated in the neuroprotective action of NS-7. Topics: Animals; Arterial Occlusive Diseases; Brain Ischemia; Calcium; Calpain; Carrier Proteins; Cerebral Cortex; Cerebral Infarction; Enzyme Activation; Glucose; Hypoglycemia; Hypoxia; Male; Microfilament Proteins; Neostriatum; Nerve Tissue Proteins; Neuroprotective Agents; Organ Culture Techniques; Oxygen; Piperazines; Pyrimidines; Rats; Rats, Sprague-Dawley | 1997 |