lignans and Mastitis

lignans has been researched along with Mastitis* in 2 studies

Other Studies

2 other study(ies) available for lignans and Mastitis

ArticleYear
Schisandrin A protects against lipopolysaccharide-induced mastitis through activating Nrf2 signaling pathway and inducing autophagy.
    International immunopharmacology, 2020, Volume: 78

    Schisandrin A (Sch A), a dibenzocyclooctadiene lignan extracted from Schisandra chinensis (Turcz.) Baill., has anti-oxidant and anti-inflammatory effects, but the effect on masitits has not been studied. Therefore, we investigated the effect of Sch A in cell and mouse models of lipopolysaccharide (LPS)-induced mastitis. Studies in vivo showed that Sch A reduced LPS-induced mammary injury and the production of pro-inflammatory mediators. Sch A also decreased the levels of pro-inflammatory mediators and activated nuclear factor-E2 associated factor 2 (Nrf2) signaling pathway in mouse mammary epithelial cells (mMECs). The Nrf2 inhibitor partially abrogated the downregulation of Sch A on LPS-induced inflammatory response. In addition, LPS stimulation suppressed autophagy, while both Sch A and the autophagy inducer rapamycin activated autophagy in mMECs, which down-regulated inflammatory response. Sch A also restrained LPS-induced phosphorylation of mammalian target of rapamycin (mTOR) and activated AMP-activated protein kinase (AMPK) and unc-51 like kinase 1 (ULK1). In summary, these results suggest that Sch A exerts protective effects in LPS-induced mastitis models by activating Nrf2 signaling pathway and inducing autophagy and the autophagy is initiated by suppressing mTOR signaling pathway and activating AMPK-ULK1 signaling pathway.

    Topics: Animals; Anti-Inflammatory Agents; Autophagy; Cells, Cultured; Cyclooctanes; Epithelial Cells; Female; Interleukin-1beta; Lignans; Lipopolysaccharides; Mammary Glands, Animal; Mastitis; Mice, Inbred C57BL; NF-E2-Related Factor 2; Peroxidase; Polycyclic Compounds; Signal Transduction; Tumor Necrosis Factor-alpha

2020
Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.
    Inflammation, 2015, Volume: 38, Issue:1

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

    Topics: Animals; Biphenyl Compounds; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Epithelial Cells; Female; Humans; Inflammation; Lignans; Male; Mammary Glands, Animal; Mastitis; Mice; Mice, Inbred BALB C

2015