icatibant and Sepsis

icatibant has been researched along with Sepsis* in 2 studies

Other Studies

2 other study(ies) available for icatibant and Sepsis

ArticleYear
The role of bradykinin and the effect of the bradykinin receptor antagonist icatibant in porcine sepsis.
    Shock (Augusta, Ga.), 2011, Volume: 36, Issue:5

    Bradykinin (BK) is regarded as an important mediator of edema, shock, and inflammation during sepsis. In this study, we evaluated the contribution of BK in porcine sepsis by blocking BK and by measuring the stable BK metabolite, BK1-5, using anesthetized pigs. The effect of BK alone, the efficacy of icatibant to block this effect, and the recovery of BK measured as plasma BK1-5 were first investigated. Purified BK injected intravenously induced an abrupt fall in blood pressure, which was completely prevented by pretreatment with icatibant. BK1-5 was detected in plasma corresponding to the doses given. The effect of icatibant was then investigated in an established model of porcine gram-negative sepsis. Neisseria meningitidis was infused intravenously without any pretreatment (n = 8) or pretreated with icatibant (n = 8). Negative controls received saline only. Icatibant-treated pigs developed the same degree of severe sepsis as did the controls. Both groups had massive capillary leakage, leukopenia, and excessive cytokine release. The plasma level of BK1-5 was low or nondetectable in all pigs. The latter observation was confirmed in supplementary studies with pigs undergoing Escherichia coli or polymicrobial sepsis induced by cecal ligation and puncture. In conclusion, icatibant completely blocked the hemodynamic effects of BK but had no beneficial effects on N. meningitidis-induced edema, shock, and inflammation. This and the fact that plasma BK1-5 in all the septic pigs was virtually nondetectable question the role of BK as an important mediator of porcine sepsis. Thus, the data challenge the current view of the role of BK also in human sepsis.

    Topics: Animals; Bradykinin; Bradykinin Receptor Antagonists; Edema; Inflammation; Neisseria meningitidis; Sepsis; Shock; Swine

2011
Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs.
    Anesthesia and analgesia, 2000, Volume: 90, Issue:3

    Cyclooxygenase (COX) products play an important role in modulating sepsis and subsequent endothelial injury. We hypothesized that COX inhibitors may attenuate endothelial dysfunction during sepsis, as measured by receptor-mediated bradykinin (BK)-induced vasoconstriction and/or receptor-independent hypoxic pulmonary vasoconstriction (HPV). Rats were administered intraperitoneally a nonselective COX inhibitor (indomethacin, 5 or 10 mg/kg) or a selective COX-2 inhibitor (NS-398, 4 or 8 mg/kg) 1 h before lipopolysaccharide (LPS, 15 mg/kg), or saline (control). Three hours later, the rats were anesthetized, the lungs were isolated, and pulmonary vasoreactivity was assessed with BK (0.3, 1.0, and 3.0 microg) and HPV (3% O(2)). Perfusion pressure was monitored as an index of vasoconstriction. To investigate what receptor-subtype is mediating BK responses, the BK(1)-receptor antagonist des-Arg(9)-[Leu(8)]-BK, the BK(2)-receptor antagonist HOE-140, or the thromboxane A(2)-receptor antagonist SQ 29548 (all at 1 microM) were added to the perfusate. BK-induced vasoconstriction was significantly increased in LPS lungs (1.4-5.2 mm Hg) compared with control (0.1-1.1 mm Hg). In LPS lungs, indomethacin 10 mg/kg significantly decreased BK vasoconstriction by 78% +/- 9%, whereas 5 mg/kg did not. NS-398, 4 mg/kg, significantly attenuated BK vasoconstriction at 0.3 microg (71% +/- 7%) and 1.0 microg (56% +/- 12%), whereas 8 mg/kg attenuated 0.3 microg BK (57% +/- 14%), compared with LPS lungs. HPV was increased in LPS lungs (21.5 +/- 2 mm Hg) compared with control lungs (9.8 +/- 0.6 mm Hg). Indomethacin 5 mg/kg increased HPV in LPS lungs; otherwise, HPV was not altered by COX inhibition. BK-induced vasoconstriction was prevented by BK(2), but not BK(1) or thromboxane A(2)-receptor antagonism. This study suggests that nonselective COX inhibition, and possibly inhibition of the inducible isoform COX-2, may attenuate sepsis-induced, receptor-mediated vasoconstriction in rats.. This study demonstrated that, in an isolated rat lung model, nonselective inhibition of the cyclooxygenase pathway, and possibly selective inhibition of the inducible cyclooxygenase-2 isoform, may attenuate sepsis-induced endothelial dysfunction.

    Topics: Animals; Bradykinin; Bridged Bicyclo Compounds, Heterocyclic; Cyclooxygenase Inhibitors; Fatty Acids, Unsaturated; Hydrazines; Hypoxia; Lipopolysaccharides; Lung; Male; Nitric Oxide; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptor, Bradykinin B1; Receptor, Bradykinin B2; Receptors, Bradykinin; Sepsis; Vasoconstriction

2000